These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 20714554)
1. Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. Sen T; Bruce IJ; Mercer T Chem Commun (Camb); 2010 Sep; 46(36):6807-9. PubMed ID: 20714554 [TBL] [Abstract][Full Text] [Related]
2. A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Kim J; Lee J; Na HB; Kim BC; Youn JK; Kwak JH; Moon K; Lee E; Kim J; Park J; Dohnalkova A; Park HG; Gu MB; Chang HN; Grate JW; Hyeon T Small; 2005 Dec; 1(12):1203-7. PubMed ID: 17193420 [No Abstract] [Full Text] [Related]
3. A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Sahoo B; Sahu SK; Bhattacharya D; Dhara D; Pramanik P Colloids Surf B Biointerfaces; 2013 Jan; 101():280-9. PubMed ID: 23010031 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of amidase into a magnetic hierarchically porous metal-organic framework for efficient biocatalysis. Lin C; Xu K; Zheng R; Zheng Y Chem Commun (Camb); 2019 May; 55(40):5697-5700. PubMed ID: 31032825 [TBL] [Abstract][Full Text] [Related]
5. A hierarchically ordered porous novel vanado-silicate catalyst for highly efficient oxidation of bulky organic molecules. Sen T; Whittle J; Howard M Chem Commun (Camb); 2012 May; 48(35):4232-4. PubMed ID: 22441436 [TBL] [Abstract][Full Text] [Related]
6. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Liu J; Qiao SZ; Hu QH; Lu GQ Small; 2011 Feb; 7(4):425-43. PubMed ID: 21246712 [TBL] [Abstract][Full Text] [Related]
7. Tailoring a robust nanozyme formulation based on surfactant stabilized lipase immobilized onto newly fabricated magnetic silica anchored graphene nanocomposite: Aggrandized stability and application. Asmat S; Husain Q; Shoeb M; Mobin M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110883. PubMed ID: 32409040 [TBL] [Abstract][Full Text] [Related]
8. Enzyme immobilised novel core-shell superparamagnetic nanocomposites for enantioselective formation of 4-(R)-hydroxycyclopent-2-en-1-(S)-acetate. Sharifabad ME; Hodgson B; Jellite M; Mercer T; Sen T Chem Commun (Camb); 2014 Oct; 50(76):11185-7. PubMed ID: 25111157 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification. Cao Y; Wu Z; Wang T; Xiao Y; Huo Q; Liu Y Dalton Trans; 2016 Apr; 45(16):6998-7003. PubMed ID: 26988724 [TBL] [Abstract][Full Text] [Related]
10. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. Dyal A; Loos K; Noto M; Chang SW; Spagnoli C; Shafi KV; Ulman A; Cowman M; Gross RA J Am Chem Soc; 2003 Feb; 125(7):1684-5. PubMed ID: 12580578 [TBL] [Abstract][Full Text] [Related]
11. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Dussan KJ; Cardona CA; Giraldo OH; Gutiérrez LF; Pérez VH Bioresour Technol; 2010 Dec; 101(24):9542-9. PubMed ID: 20716486 [TBL] [Abstract][Full Text] [Related]
12. Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe Heidarizadeh M; Doustkhah E; Rostamnia S; Rezaei PF; Harzevili FD; Zeynizadeh B Int J Biol Macromol; 2017 Aug; 101():696-702. PubMed ID: 28363653 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of porous Fe7Co3/carbon nanocomposites and their applications as magnetically separable adsorber and catalyst support. Wang Z; Liu R; Zhao F; Liu X; Lv M; Meng J Langmuir; 2010 Jun; 26(12):10135-40. PubMed ID: 20369845 [TBL] [Abstract][Full Text] [Related]
14. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde. Dizge N; Keskinler B; Tanriseven A Colloids Surf B Biointerfaces; 2008 Oct; 66(1):34-8. PubMed ID: 18571389 [TBL] [Abstract][Full Text] [Related]
15. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification. Jiang C; Cheng C; Hao M; Wang H; Wang Z; Shen C; Cheong LZ Int J Biol Macromol; 2017 Dec; 105(Pt 1):1328-1336. PubMed ID: 28768186 [TBL] [Abstract][Full Text] [Related]
16. Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: application to lactulose palmitate synthesis. Bernal C; Illanes A; Wilson L Langmuir; 2014 Apr; 30(12):3557-66. PubMed ID: 24621332 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of ordered magnetic mesoporous gamma-Fe2O3/SiO2 nanocomposites with diverse mesostructures. Wang Y; Ren J; Liu X; Wang Y; Guo Y; Guo Y; Lu G J Colloid Interface Sci; 2008 Oct; 326(1):158-65. PubMed ID: 18687444 [TBL] [Abstract][Full Text] [Related]
18. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis. Costa L; Brissos V; Lemos F; Ribeiro FR; Cabral JM Bioprocess Biosyst Eng; 2008 Jun; 31(4):323-7. PubMed ID: 17940805 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of silica-gold nanocomposites and their porous nanoparticles by an in-situ approach. Kumar A; Pushparaj VL; Murugesan S; Viswanathan G; Nalamasu R; Linhardt RJ; Nalamasu O; Ajayan PM Langmuir; 2006 Oct; 22(21):8631-4. PubMed ID: 17014096 [TBL] [Abstract][Full Text] [Related]