These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 20714626)

  • 1. Oxidation of formic acid on the Pt(111) surface in the gas phase.
    Gao W; Keith JA; Anton J; Jacob T
    Dalton Trans; 2010 Sep; 39(36):8450-6. PubMed ID: 20714626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111).
    Gao W; Keith JA; Anton J; Jacob T
    J Am Chem Soc; 2010 Dec; 132(51):18377-85. PubMed ID: 21117692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways for the non-CO-involved oxidation of methanol on Pt(111).
    Gao W; Zhao M; Jiang Q
    Chemphyschem; 2008 Oct; 9(14):2092-8. PubMed ID: 18773468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the active intermediates in the oxidation of formic acid on Au and Pt(111).
    Gao W; Song EH; Jiang Q; Jacob T
    Chemistry; 2014 Aug; 20(35):11005-12. PubMed ID: 25056192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode.
    Xu J; Yuan D; Yang F; Mei D; Zhang Z; Chen YX
    Phys Chem Chem Phys; 2013 Mar; 15(12):4367-76. PubMed ID: 23416880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells.
    Wang S; Wang X; Jiang SP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6883-91. PubMed ID: 21409276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [In situ time-resolved FTIR studies of HCOOH oxidation on Pt(100)/Sb electrodes].
    Yang Y; Wu Q; Zhou Z; Zheng M; Chen S; Sun S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Dec; 20(6):765-7. PubMed ID: 12938462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics.
    Xu Y; Getman RB; Shelton WA; Schneider WF
    Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.
    Ishikawa A; Neurock M; Iglesia E
    J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical evidence of PtSn alloy efficiency for CO oxidation.
    Dupont C; Jugnet Y; Loffreda D
    J Am Chem Soc; 2006 Jul; 128(28):9129-36. PubMed ID: 16834386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coverage dependence and hydroperoxyl-mediated pathway of catalytic water formation on Pt (111) surface.
    Qi L; Yu J; Li J
    J Chem Phys; 2006 Aug; 125(5):054701. PubMed ID: 16942235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane oxidation mechanism on Pt(111): a cluster model DFT study.
    Psofogiannakis G; St-Amant A; Ternan M
    J Phys Chem B; 2006 Dec; 110(48):24593-605. PubMed ID: 17134220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study.
    Housmans TH; Wonders AH; Koper MT
    J Phys Chem B; 2006 May; 110(20):10021-31. PubMed ID: 16706461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT.
    Hansen HA; Rossmeisl J; Nørskov JK
    Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT.
    Beltramo GL; Shubina TE; Koper MT
    Chemphyschem; 2005 Dec; 6(12):2597-606. PubMed ID: 16331729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigations on decomposition of HCOOH catalyzed by Pd7 cluster.
    Li SJ; Zhou X; Tian WQ
    J Phys Chem A; 2012 Nov; 116(47):11745-52. PubMed ID: 23102058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards mixed fuels: the electrochemistry of hydrazine in the presence of methanol and formic acid.
    Aldous L; Compton RG
    Chemphyschem; 2011 May; 12(7):1280-7. PubMed ID: 21480459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid.
    Chen W; Kim J; Sun S; Chen S
    Langmuir; 2007 Oct; 23(22):11303-10. PubMed ID: 17892313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.