These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20714640)

  • 1. Separation and metrology of nanoparticles by nanofluidic size exclusion.
    Stavis SM; Geist J; Gaitan M
    Lab Chip; 2010 Oct; 10(19):2618-21. PubMed ID: 20714640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels.
    Hamblin MN; Xuan J; Maynes D; Tolley HD; Belnap DM; Woolley AT; Lee ML; Hawkins AR
    Lab Chip; 2010 Jan; 10(2):173-8. PubMed ID: 20066244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip.
    Hiyama S; Moritani Y; Gojo R; Takeuchi S; Sutoh K
    Lab Chip; 2010 Oct; 10(20):2741-8. PubMed ID: 20714497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip.
    Chen HM; Pang L; Gordon MS; Fainman Y
    Small; 2011 Oct; 7(19):2750-7. PubMed ID: 21842478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nanofluidic channel with embedded transverse nanoelectrodes.
    Maleki T; Mohammadi S; Ziaie B
    Nanotechnology; 2009 Mar; 20(10):105302. PubMed ID: 19417517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring reaction rates on single particles in a microfluidic device.
    Caulum MM; Henry CS
    Lab Chip; 2008 Jun; 8(6):865-7. PubMed ID: 18497903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical arrays of nanofluidic channels fabricated without nanolithography.
    Sordan R; Miranda A; Traversi F; Colombo D; Chrastina D; Isella G; Masserini M; Miglio L; Kern K; Balasubramanian K
    Lab Chip; 2009 Jun; 9(11):1556-60. PubMed ID: 19458862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size exclusion chromatography of microliter volumes for on-line use in low-pressure microfluidic systems.
    Chirica G; Lachmann J; Chan J
    Anal Chem; 2006 Aug; 78(15):5362-8. PubMed ID: 16878870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive self-synchronized two-droplet generation.
    Hong J; Choi M; Edel JB; deMello AJ
    Lab Chip; 2010 Oct; 10(20):2702-9. PubMed ID: 20717573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.
    Regtmeier J; Käsewieter J; Everwand M; Anselmetti D
    J Sep Sci; 2011 May; 34(10):1180-3. PubMed ID: 21442752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferrofluid mediated nanocytometry.
    Kose AR; Koser H
    Lab Chip; 2012 Jan; 12(1):190-6. PubMed ID: 22076536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications.
    Huang G; Bolaños Quiñones VA; Ding F; Kiravittaya S; Mei Y; Schmidt OG
    ACS Nano; 2010 Jun; 4(6):3123-30. PubMed ID: 20527797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters.
    Bow H; Fu J; Han J
    Electrophoresis; 2008 Dec; 29(23):4646-51. PubMed ID: 19016242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules.
    Blom MT; Chmela E; Oosterbroek RE; Tijssen R; van den Berg A
    Anal Chem; 2003 Dec; 75(24):6761-8. PubMed ID: 14670033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.