These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20714921)

  • 1. Biodegradation of pyrene in sand, silt and clay fractions of sediment.
    Cui X; Hunter W; Yang Y; Chen Y; Gan J
    Biodegradation; 2011 Apr; 22(2):297-307. PubMed ID: 20714921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-scale understanding of the bioavailability of PAHs in sediment.
    Talley JW; Ghosh U; Tucker SG; Furey JS; Luthy RG
    Environ Sci Technol; 2002 Feb; 36(3):477-83. PubMed ID: 11871564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of pyrene biodegradation capacity in two types of solid media.
    Chevron Cottin N; Merlin G
    Sci Total Environ; 2007 Jul; 380(1-3):116-23. PubMed ID: 17462711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of organic matter and clay content in sediments for bioavailability of pyrene.
    Spasojević J; Maletić S; Rončević S; Grgić M; Krčmar D; Varga N; Dalmacija B
    Water Sci Technol; 2018 Jan; 77(1-2):439-447. PubMed ID: 29377828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment.
    Ghosh U; Talley JW; Luthy RG
    Environ Sci Technol; 2001 Sep; 35(17):3468-75. PubMed ID: 11563648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.
    Ortega-Calvo JJ; Gschwend PM
    Appl Environ Microbiol; 2010 Jul; 76(13):4430-7. PubMed ID: 20472733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.
    Brenner RC; Magar VS; Ickes JA; Foote EA; Abbott JE; Bingler LS; Crecelius EA
    Environ Sci Technol; 2004 Apr; 38(8):2328-37. PubMed ID: 15116837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of slow desorption on the kinetics of biodegradation of polycyclic aromatic hydrocarbons.
    Gomez-Lahoz C; Ortega-Calvo JJ
    Environ Sci Technol; 2005 Nov; 39(22):8776-83. PubMed ID: 16323776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States.
    Wang XC; Zhang YX; Chen RF
    Mar Pollut Bull; 2001 Nov; 42(11):1139-49. PubMed ID: 11763227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of pyrene on two paddy soils and their particle-size fractions.
    Li JH; Pan GX
    J Environ Sci (China); 2005; 17(6):962-5. PubMed ID: 16465887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].
    Mao XL; Lu KP; Sun T; Zhang XK; He LZ; Wang HL
    Huan Jing Ke Xue; 2015 May; 36(5):1827-35. PubMed ID: 26314136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil.
    Uyttebroek M; Breugelmans P; Janssen M; Wattiau P; Joffe B; Karlson U; Ortega-Calvo JJ; Bastiaens L; Ryngaert A; Hausner M; Springael D
    Environ Microbiol; 2006 May; 8(5):836-47. PubMed ID: 16623741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of bifenthrin sediment concentrations to grain size and total organic carbon in California waterbodies: implications for ecological risk.
    Hall LW; Anderson RD
    Bull Environ Contam Toxicol; 2014 Dec; 93(6):764-8. PubMed ID: 25120259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging and sediment composition on hexachlorobenzene desorption resistance compared to oral bioavailability in rats.
    Chai Y; Davis JW; Saghir SA; Qiu X; Budinsky RA; Bartels MJ
    Chemosphere; 2008 Jun; 72(3):432-41. PubMed ID: 18396312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.
    Luo L; Zhou ZC; Gu JD
    Ecotoxicology; 2015 Oct; 24(7-8):1508-16. PubMed ID: 25822201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of organic carbon content, clay type, and aging on the oral bioavailability of hexachlorobenzene in rats.
    Saghir SA; Bartels MJ; Budinsky RA; Harris EE; Clark AJ; Staley JL; Chai Y; Davis JW
    Environ Toxicol Chem; 2007 Nov; 26(11):2420-9. PubMed ID: 17941744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disintegration method for direct counting of bacteria in clay-dominated sediments: dissolving silicates and subsequent fluorescent staining of bacteria.
    Boenigk J
    J Microbiol Methods; 2004 Feb; 56(2):151-9. PubMed ID: 14744444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments.
    Molina M; Araujo R; Hodson RE
    Can J Microbiol; 1999 Jun; 45(6):520-9. PubMed ID: 10453479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chemical charge on the fate of organic chemicals in sediment particle size fractions.
    Holzmann H; Simeoni A; Schäffer A
    Chemosphere; 2021 Feb; 265():129105. PubMed ID: 33261835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.