These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20715220)

  • 1. Exploiting cavities in supramolecular gels.
    Foster JA; Steed JW
    Angew Chem Int Ed Engl; 2010 Sep; 49(38):6718-24. PubMed ID: 20715220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular gels: functions and uses.
    Sangeetha NM; Maitra U
    Chem Soc Rev; 2005 Oct; 34(10):821-36. PubMed ID: 16172672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible heat-set organogel based on supramolecular interactions of beta-cyclodextrin in N,N-dimethylformamide.
    Li Y; Liu J; Du G; Yan H; Wang H; Zhang H; An W; Zhao W; Sun T; Xin F; Kong L; Li Y; Hao A; Hao J
    J Phys Chem B; 2010 Aug; 114(32):10321-6. PubMed ID: 20701367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regioselective opening of proximally sulfato-capped cyclodextrins.
    Jouffroy M; Gramage-Doria R; Armspach D; Matt D; Toupet L
    Chem Commun (Camb); 2012 Jun; 48(48):6028-30. PubMed ID: 22576937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of retention mechanism of resorcinarene based cavitands by linear and nonlinear chromatography.
    Bartó E; Prauda I; Kilár F; Kiss I; Felinger A
    J Chromatogr A; 2016 Jul; 1456():152-61. PubMed ID: 27317005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention behavior of resorcinarene-based cavitands on C8 and C18 stationary phases.
    Bartó E; Prauda I; Kilár F; Kiss I; Felinger A
    J Sep Sci; 2015 Sep; 38(17):2975-82. PubMed ID: 26084870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins.
    Deng W; Yamaguchi H; Takashima Y; Harada A
    Chem Asian J; 2008 Apr; 3(4):687-95. PubMed ID: 18293292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and study of phosphocavitands-a new family of cavity systems.
    Nifantyev EE; Maslennikova VI; Merkulov RV
    Acc Chem Res; 2005 Feb; 38(2):108-16. PubMed ID: 15709730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion of cavitands and calix[4]arenes into a metallobridged para-(1h-imidazo[4,5-f][3,8]phenanthrolin-2-yl)-expanded calix[4]arene.
    Botana E; Da Silva E; Benet-Buchholz J; Ballester P; de Mendoza J
    Angew Chem Int Ed Engl; 2007; 46(1-2):198-201. PubMed ID: 17051576
    [No Abstract]   [Full Text] [Related]  

  • 11. Superbowl container molecules.
    Barrett ES; Irwin JL; Edwards AJ; Sherburn MS
    J Am Chem Soc; 2004 Dec; 126(51):16747-9. PubMed ID: 15612712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular capsules derived from resorcin[4]arenes by metal-coordination.
    Schröder T; Sahu SN; Mattay J
    Top Curr Chem; 2012; 319():99-124. PubMed ID: 22160427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.
    Sambrook MR; Notman S
    Chem Soc Rev; 2013 Dec; 42(24):9251-67. PubMed ID: 24048279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile and modular approach to functionalisation of deep-cavity cavitands via"click" chemistry.
    Li Y; Giles MD; Liu S; Laurent BA; Hoskins JN; Cortez MA; Sreerama SG; Gibb BC; Grayson SM
    Chem Commun (Camb); 2011 Aug; 47(32):9036-8. PubMed ID: 21603694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a 4:1:4 supramolecular assembly of neutral TiiiiPO cavitands and tetrakis(N-methylpyridinium)porphyrin iodide.
    De Zorzi R; Dubessy B; Mulatier JC; Geremia S; Randaccio L; Dutasta JP
    J Org Chem; 2007 Jun; 72(12):4528-31. PubMed ID: 17500565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition and supramolecular chemistry in the gas phase.
    Schalley CA
    Mass Spectrom Rev; 2001; 20(5):253-309. PubMed ID: 11948654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton driven vase-to-kite conformational change in cavitands at an air-water interface monitored by surface SHG.
    Lagugné-Labarthet F; An YQ; Yu T; Shen YR; Dalcanale E; Shenoy DK
    Langmuir; 2005 Aug; 21(16):7066-70. PubMed ID: 16042423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer-printing and host-guest properties of 3D supramolecular particle structures.
    Ling XY; Phang IY; Reinhoudt DN; Vancso GJ; Huskens J
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):960-8. PubMed ID: 20356024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding properties of cavitands in aqueous solution--the influence of charge on guest selectivity.
    Haas CH; Biros SM; Rebek J
    Chem Commun (Camb); 2005 Dec; (48):6044-5. PubMed ID: 16333522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.