These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 20715792)
1. Structural analysis of the Smad2-MAN1 interaction that regulates transforming growth factor-β signaling at the inner nuclear membrane. Kondé E; Bourgeois B; Tellier-Lebegue C; Wu W; Pérez J; Caputo S; Attanda W; Gasparini S; Charbonnier JB; Gilquin B; Worman HJ; Zinn-Justin S Biochemistry; 2010 Sep; 49(37):8020-32. PubMed ID: 20715792 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for receptor-regulated SMAD recognition by MAN1. Miyazono KI; Ohno Y; Wada H; Ito T; Fukatsu Y; Kurisaki A; Asashima M; Tanokura M Nucleic Acids Res; 2018 Dec; 46(22):12139-12153. PubMed ID: 30321401 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087 [TBL] [Abstract][Full Text] [Related]
4. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Lin F; Morrison JM; Wu W; Worman HJ Hum Mol Genet; 2005 Feb; 14(3):437-45. PubMed ID: 15601644 [TBL] [Abstract][Full Text] [Related]
5. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. Caputo S; Couprie J; Duband-Goulet I; Kondé E; Lin F; Braud S; Gondry M; Gilquin B; Worman HJ; Zinn-Justin S J Biol Chem; 2006 Jun; 281(26):18208-15. PubMed ID: 16648637 [TBL] [Abstract][Full Text] [Related]
6. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction. Kuang C; Chen Y Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410 [TBL] [Abstract][Full Text] [Related]
7. Cooperation between GATA4 and TGF-beta signaling regulates intestinal epithelial gene expression. Belaguli NS; Zhang M; Rigi M; Aftab M; Berger DH Am J Physiol Gastrointest Liver Physiol; 2007 Jun; 292(6):G1520-33. PubMed ID: 17290010 [TBL] [Abstract][Full Text] [Related]
8. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif. Makkar P; Metpally RP; Sangadala S; Reddy BV J Mol Graph Model; 2009 Apr; 27(7):803-12. PubMed ID: 19157940 [TBL] [Abstract][Full Text] [Related]
9. Man1, an inner nuclear membrane protein, regulates vascular remodeling by modulating transforming growth factor beta signaling. Ishimura A; Ng JK; Taira M; Young SG; Osada S Development; 2006 Oct; 133(19):3919-28. PubMed ID: 16943282 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Parekh TV; Gama P; Wen X; Demopoulos R; Munger JS; Carcangiu ML; Reiss M; Gold LI Cancer Res; 2002 May; 62(10):2778-90. PubMed ID: 12019154 [TBL] [Abstract][Full Text] [Related]
11. Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Muro-Cacho CA; Rosario-Ortiz K; Livingston S; Muñoz-Antonia T Clin Cancer Res; 2001 Jun; 7(6):1618-26. PubMed ID: 11410498 [TBL] [Abstract][Full Text] [Related]
12. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Ito Y; Sarkar P; Mi Q; Wu N; Bringas P; Liu Y; Reddy S; Maxson R; Deng C; Chai Y Dev Biol; 2001 Aug; 236(1):181-94. PubMed ID: 11456453 [TBL] [Abstract][Full Text] [Related]
15. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Wang D; Kanuma T; Mizunuma H; Takama F; Ibuki Y; Wake N; Mogi A; Shitara Y; Takenoshita S Cancer Res; 2000 Aug; 60(16):4507-12. PubMed ID: 10969799 [TBL] [Abstract][Full Text] [Related]
16. Distortion of autocrine transforming growth factor beta signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells. Sugano Y; Matsuzaki K; Tahashi Y; Furukawa F; Mori S; Yamagata H; Yoshida K; Matsushita M; Nishizawa M; Fujisawa J; Inoue K Oncogene; 2003 Apr; 22(15):2309-21. PubMed ID: 12700666 [TBL] [Abstract][Full Text] [Related]
17. Unique and redundant roles of Smad3 in TGF-beta-mediated regulation of long bone development in organ culture. Alvarez J; Serra R Dev Dyn; 2004 Aug; 230(4):685-99. PubMed ID: 15254903 [TBL] [Abstract][Full Text] [Related]
18. The nuclear envelope protein MAN1 regulates TGFbeta signaling and vasculogenesis in the embryonic yolk sac. Cohen TV; Kosti O; Stewart CL Development; 2007 Apr; 134(7):1385-95. PubMed ID: 17329363 [TBL] [Abstract][Full Text] [Related]
19. Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Koinuma D; Tsutsumi S; Kamimura N; Taniguchi H; Miyazawa K; Sunamura M; Imamura T; Miyazono K; Aburatani H Mol Cell Biol; 2009 Jan; 29(1):172-86. PubMed ID: 18955504 [TBL] [Abstract][Full Text] [Related]
20. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Schmierer B; Hill CS Mol Cell Biol; 2005 Nov; 25(22):9845-58. PubMed ID: 16260601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]