BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20715828)

  • 1. A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications.
    Brushett FR; Thorum MS; Lioutas NS; Naughton MS; Tornow C; Jhong HR; Gewirth AA; Kenis PJ
    J Am Chem Soc; 2010 Sep; 132(35):12185-7. PubMed ID: 20715828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).
    Yamanaka I; Onisawa T; Hashimoto T; Murayama T
    ChemSusChem; 2011 Apr; 4(4):494-501. PubMed ID: 21400665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical detection of scDNA cleavage in the presence of macrocyclic hexaaza-copper(II) complex.
    Kang J; Dong S; Lu X; Su B; Wu H; Sun K
    Bioelectrochemistry; 2006 Sep; 69(1):58-64. PubMed ID: 16427814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2006 Mar; 6(3):353-61. PubMed ID: 16511617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes.
    Michel M; Ettingshausen F; Scheiba F; Wolz A; Roth C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3796-801. PubMed ID: 18563240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes.
    Varcoe JR; Slade RC; Wright GL; Chen Y
    J Phys Chem B; 2006 Oct; 110(42):21041-9. PubMed ID: 17048923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
    Girishkumar G; Rettker M; Underhile R; Binz D; Vinodgopal K; McGinn P; Kamat P
    Langmuir; 2005 Aug; 21(18):8487-94. PubMed ID: 16114961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells.
    Yuan Y; Zhao B; Jeon Y; Zhong S; Zhou S; Kim S
    Bioresour Technol; 2011 May; 102(10):5849-54. PubMed ID: 21435866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.
    Kim JR; Kim JY; Han SB; Park KW; Saratale GD; Oh SE
    Bioresour Technol; 2011 Jan; 102(1):342-7. PubMed ID: 20656480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dioxygen and hydrogen peroxide reduction with hemocyanin model complexes.
    Thorseth MA; Letko CS; Rauchfuss TB; Gewirth AA
    Inorg Chem; 2011 Jul; 50(13):6158-62. PubMed ID: 21627090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nitrogen-doped polyaniline carbon with high electrocatalytic activity and stability for the oxygen reduction reaction in fuel cells.
    Zhong H; Zhang H; Xu Z; Tang Y; Mao J
    ChemSusChem; 2012 Sep; 5(9):1698-702. PubMed ID: 22890976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism.
    Wang Y; Zhou H
    Chem Commun (Camb); 2010 Sep; 46(34):6305-7. PubMed ID: 20668776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.
    Duteanu N; Erable B; Senthil Kumar SM; Ghangrekar MM; Scott K
    Bioresour Technol; 2010 Jul; 101(14):5250-5. PubMed ID: 20171090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel dinuclear Schiff-base copper(II) complex modified electrode for ascorbic acid catalytic oxidation and determination.
    Zhang Z; Li X; Wang C; Zhang C; Liu P; Fang T; Xiong Y; Xu W
    Dalton Trans; 2012 Jan; 41(4):1252-8. PubMed ID: 22124199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC).
    Yamanaka I; Tazawa S; Murayama T; Iwasaki T; Takenaka S
    ChemSusChem; 2010; 3(1):59-62. PubMed ID: 19918834
    [No Abstract]   [Full Text] [Related]  

  • 18. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.
    Cui X; Shi J; Wang Y; Chen Y; Zhang L; Hua Z
    ChemSusChem; 2014 Jan; 7(1):135-45. PubMed ID: 24382829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.
    Kim JH; Yu JS
    Phys Chem Chem Phys; 2010 Dec; 12(46):15301-8. PubMed ID: 20938509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonprecious metal catalysts for fuel cell applications: electrochemical dioxygen activation by a series of first row transition metal tris(2-pyridylmethyl)amine complexes.
    Ward AL; Elbaz L; Kerr JB; Arnold J
    Inorg Chem; 2012 Apr; 51(8):4694-706. PubMed ID: 22458367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.