These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 20715871)
21. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite. Gorodetsky AA; Barton JK Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584 [TBL] [Abstract][Full Text] [Related]
22. The influence of orientations and external electric field on charge carrier mobilities in CuPc and F16CuPc films on highly ordered pyrolytic graphite and octane-1-thiol terminated Au(111) substrates. Chen S; Ma J Phys Chem Chem Phys; 2010 Oct; 12(38):12177-87. PubMed ID: 20714578 [TBL] [Abstract][Full Text] [Related]
23. Electrochemical ESR and voltammetric studies of lithium ion pairing with electrogenerated 9,10-anthraquinone radical anions either free in acetonitrile solution or covalently bound to multiwalled carbon nanotubes. Wain AJ; Wildgoose GG; Heald CG; Jiang L; Jones TG; Compton RG J Phys Chem B; 2005 Mar; 109(9):3971-8. PubMed ID: 16851452 [TBL] [Abstract][Full Text] [Related]
24. Edge plane sites on highly ordered pyrolytic graphite as templates for making palladium nanowires via electrochemical decoration. Ji X; Banks CE; Xi W; Wilkins SJ; Compton RG J Phys Chem B; 2006 Nov; 110(45):22306-9. PubMed ID: 17091967 [TBL] [Abstract][Full Text] [Related]
25. Transition of interfacial capacitors in electrowetting on a graphite surface by ion intercalation. Tang B; Shao W; Groenewold J; Li H; Feng Y; Xu X; Shui L; Barman J; Zhou G Phys Chem Chem Phys; 2019 Dec; 21(48):26284-26291. PubMed ID: 31602437 [TBL] [Abstract][Full Text] [Related]
26. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
27. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery. Wang Q; Sun J; Chen C J Hazard Mater; 2009 Aug; 167(1-3):1209-14. PubMed ID: 19261386 [TBL] [Abstract][Full Text] [Related]
28. Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueous electrolyte. Kobayashi S; Uchimoto Y J Phys Chem B; 2005 Jul; 109(27):13322-6. PubMed ID: 16852662 [TBL] [Abstract][Full Text] [Related]
29. Diffusion mechanism of lithium ion through basal plane of layered graphene. Yao F; Güneş F; Ta HQ; Lee SM; Chae SJ; Sheem KY; Cojocaru CS; Xie SS; Lee YH J Am Chem Soc; 2012 May; 134(20):8646-54. PubMed ID: 22545779 [TBL] [Abstract][Full Text] [Related]
30. Edge-exfoliated graphites for facile kinetics of delithiation. Park JS; Lee MH; Jeon IY; Park HS; Baek JB; Song HK ACS Nano; 2012 Dec; 6(12):10770-5. PubMed ID: 23189955 [TBL] [Abstract][Full Text] [Related]
31. Chronological change from face-on to edge-on ordering of zinc-tetraphenylporphyrin at the phenyloctane-highly oriented pyrolytic graphite interface. Sakano T; Hasegawa JY; Higashiguchi K; Matsuda K Chem Asian J; 2012 Feb; 7(2):394-9. PubMed ID: 22162222 [TBL] [Abstract][Full Text] [Related]
32. Irreversible morphological changes of a graphite negative-electrode at high potentials in LiPF6-based electrolyte solution. Domi Y; Doi T; Tsubouchi S; Yamanaka T; Abe T; Ogumi Z Phys Chem Chem Phys; 2016 Aug; 18(32):22426-33. PubMed ID: 27465798 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. Brownson DAC; Garcia-Miranda Ferrari A; Ghosh S; Kamruddin M; Iniesta J; Banks CE Nanoscale Adv; 2020 Nov; 2(11):5319-5328. PubMed ID: 36132042 [TBL] [Abstract][Full Text] [Related]
34. Low-Voltage Voltammetric Electrowetting of Graphite Surfaces by Ion Intercalation/Deintercalation. Zhang G; Walker M; Unwin PR Langmuir; 2016 Aug; 32(30):7476-84. PubMed ID: 27406680 [TBL] [Abstract][Full Text] [Related]
35. Anthraquinone monosulfonate adsorbed on graphite shows two very different rates of electron transfer: surface heterogeneity due to basal and edge plane sites. Neumann CC; Batchelor-McAuley C; Downing C; Compton RG Chemistry; 2011 Jun; 17(26):7320-6. PubMed ID: 21567488 [TBL] [Abstract][Full Text] [Related]
36. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654 [TBL] [Abstract][Full Text] [Related]
37. Kinetics of anion transfer across the liquid | liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry. Quentel F; Mirceski V; L'Her M Anal Chem; 2005 Apr; 77(7):1940-9. PubMed ID: 15801722 [TBL] [Abstract][Full Text] [Related]
38. A comparative study of the anion transfer kinetics across a water/nitrobenzene interface by means of electrochemical impedance spectroscopy and square-wave voltammetry at thin organic film-modified electrodes. Gulaboski R; Mirćeski V; Pereira CM; Cordeiro MN; Silva AF; Quentel F; L'Her M; Lovrić M Langmuir; 2006 Mar; 22(7):3404-12. PubMed ID: 16548608 [TBL] [Abstract][Full Text] [Related]
39. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy. Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146 [TBL] [Abstract][Full Text] [Related]
40. Probing the reversibility and kinetics of Li Gossage ZT; Hui J; Zeng Y; Flores-Zuleta H; Rodríguez-López J Chem Sci; 2019 Dec; 10(46):10749-10754. PubMed ID: 32055381 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]