These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Dynamics of dewetting at the nanoscale using molecular dynamics. Bertrand E; Blake TD; Ledauphin V; Ogonowski G; Coninck JD; Fornasiero D; Ralston J Langmuir; 2007 Mar; 23(7):3774-85. PubMed ID: 17328565 [TBL] [Abstract][Full Text] [Related]
23. Liquid coating of moving fiber at the nanoscale. Seveno D; Ogonowski G; De Coninck J Langmuir; 2004 Sep; 20(19):8385-90. PubMed ID: 15350118 [TBL] [Abstract][Full Text] [Related]
24. Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory. Tian W; Wu K; Chen Z; Lei Z; Gao Y; Chen Z; Liu Y; Hou Y; Zhu Q; Li J J Colloid Interface Sci; 2020 Nov; 579():470-478. PubMed ID: 32622096 [TBL] [Abstract][Full Text] [Related]
25. Perfect wetting along a three-phase line: theory and molecular dynamics simulations. Mejía A; Vega LF J Chem Phys; 2006 Jun; 124(24):244505. PubMed ID: 16821987 [TBL] [Abstract][Full Text] [Related]
26. Spreading of completely wetting or partially wetting power-law fluid on solid surface. Wang XD; Zhang Y; Lee DJ; Peng XF Langmuir; 2007 Aug; 23(18):9258-62. PubMed ID: 17676773 [TBL] [Abstract][Full Text] [Related]
27. Influence of the work of adhesion on the dynamic wetting of chemically heterogeneous surfaces. Ray S; Sedev R; Priest C; Ralston J Langmuir; 2008 Nov; 24(22):13007-12. PubMed ID: 18950213 [TBL] [Abstract][Full Text] [Related]
28. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops. Gokhale SJ; Plawsky JL; Wayner PC Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921 [TBL] [Abstract][Full Text] [Related]
30. Dynamic wetting of non-newtonian fluids: multicomponent molecular-kinetic approach. Liang ZP; Wang XD; Duan YY; Min Q; Wang C; Lee DJ Langmuir; 2010 Sep; 26(18):14594-9. PubMed ID: 20795633 [TBL] [Abstract][Full Text] [Related]
31. Contact-line friction of liquid drops on self-assembled monolayers: chain-length effects. Voué M; Rioboo R; Adao MH; Conti J; Bondar AI; Ivanov DA; Blake TD; De Coninck J Langmuir; 2007 Apr; 23(9):4695-9. PubMed ID: 17388611 [TBL] [Abstract][Full Text] [Related]
32. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant. Roques-Carmes T; Mathieu V; Gigante A J Colloid Interface Sci; 2010 Apr; 344(1):180-97. PubMed ID: 20089256 [TBL] [Abstract][Full Text] [Related]
33. Equilibrium calculations of viscosity and thermal conductivity across a solid-liquid interface using boundary fluctuations. Petravic J; Harrowell P J Chem Phys; 2008 May; 128(19):194710. PubMed ID: 18500889 [TBL] [Abstract][Full Text] [Related]
38. Spreading Dynamics of Molten Polymer Drops on Glass Substrates. Zhang Y; Fuentes CA; Koekoekx R; Clasen C; Van Vuure AW; De Coninck J; Seveno D Langmuir; 2017 Aug; 33(34):8447-8454. PubMed ID: 28767248 [TBL] [Abstract][Full Text] [Related]
39. Taking a closer look: A molecular-dynamics investigation of microscopic and apparent dynamic contact angles. Fernández-Toledano JC; Blake TD; De Coninck J J Colloid Interface Sci; 2021 Apr; 587():311-323. PubMed ID: 33373793 [TBL] [Abstract][Full Text] [Related]
40. A possible way to extract the dynamic contact angle at the molecular scale from that measured experimentally. Blake TD; Fernández-Toledano JC; De Coninck J J Colloid Interface Sci; 2023 Jan; 629(Pt A):660-669. PubMed ID: 36088708 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]