These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2071624)

  • 1. Formation of bone in tibial defects in a canine model. Histomorphometric and biomechanical studies.
    Markel MD; Wikenheiser MA; Chao EY
    J Bone Joint Surg Am; 1991 Jul; 73(6):914-23. PubMed ID: 2071624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of fracture callus material properties: relationship to the torsional strength of bone.
    Markel MD; Wikenheiser MA; Chao EY
    J Orthop Res; 1990 Nov; 8(6):843-50. PubMed ID: 2213341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model.
    Seeherman HJ; Bouxsein M; Kim H; Li R; Li XJ; Aiolova M; Wozney JM
    J Bone Joint Surg Am; 2004 Sep; 86(9):1961-72. PubMed ID: 15342759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromuscular electrical stimulation enhances fracture healing: results of an animal model.
    Park SH; Silva M
    J Orthop Res; 2004 Mar; 22(2):382-7. PubMed ID: 15013100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics.
    Wu JJ; Shyr HS; Chao EY; Kelly PJ
    J Bone Joint Surg Am; 1984 Oct; 66(8):1258-64. PubMed ID: 6490701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model.
    Inoue N; Ohnishi I; Chen D; Deitz LW; Schwardt JD; Chao EY
    J Orthop Res; 2002 Sep; 20(5):1106-14. PubMed ID: 12382979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in intact tubular bone after application of rigid plates with and without compression.
    Slätis P; Karaharju E; Holmström T; Ahonen J; Paavolainen P
    J Bone Joint Surg Am; 1978 Jun; 60(4):516-22. PubMed ID: 670274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of bone healing. Comparison of QCT, SPA, MRI, and DEXA in dog osteotomies.
    Markel MD; Wikenheiser MA; Morin RL; Lewallen DG; Chao EY
    Acta Orthop Scand; 1990 Dec; 61(6):487-98. PubMed ID: 2281754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The determination of bone fracture properties by dual-energy X-ray absorptiometry and single-photon absorptiometry: a comparative study.
    Markel MD; Wikenheiser MA; Morin RL; Lewallen DG; Chao EY
    Calcif Tissue Int; 1991 Jun; 48(6):392-9. PubMed ID: 2070274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ingrowth and formation of bone in defects in an uncemented fiber-metal total hip-replacement model in dogs.
    Kang JD; McKernan DJ; Kruger M; Mutschler T; Thompson WH; Rubash HE
    J Bone Joint Surg Am; 1991 Jan; 73(1):93-105. PubMed ID: 1985999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing.
    Holstein JH; Menger MD; Scheuer C; Meier C; Culemann U; Wirbel RJ; Garcia P; Pohlemann T
    Life Sci; 2007 Feb; 80(10):893-900. PubMed ID: 17161437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of transection of the anterior cruciate ligament on healing of the medial collateral ligament. A biomechanical study of the knee in dogs.
    Woo SL; Young EP; Ohland KJ; Marcin JP; Horibe S; Lin HC
    J Bone Joint Surg Am; 1990 Mar; 72(3):382-92. PubMed ID: 2312534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of replacement prostheses for segmental defects of bone. Different porous coatings for extracortical fixation.
    Okada Y; Suka T; Sim FH; Gorski JP; Chao EY
    J Bone Joint Surg Am; 1988 Feb; 70(2):160-72. PubMed ID: 3343260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A standardized experimental fracture in the mouse tibia.
    Hiltunen A; Vuorio E; Aro HT
    J Orthop Res; 1993 Mar; 11(2):305-12. PubMed ID: 8483044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model.
    Déjardin LM; Cabassu JB; Guillou RP; Villwock M; Guiot LP; Haut RC
    Vet Surg; 2014 Mar; 43(3):271-81. PubMed ID: 24467692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The healing of experimental fractures by compression osteosynthesis. II. Morphometric and chemical analysis.
    Paavolainen P; Penttinen R; Slätis P; Karaharju E
    Acta Orthop Scand; 1979 Aug; 50(4):375-83. PubMed ID: 495058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects.
    Enneking WF; Eady JL; Burchardt H
    J Bone Joint Surg Am; 1980 Oct; 62(7):1039-58. PubMed ID: 7000788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of callus over a locked intramedullary nail in various segmental bone defects in a sheep model.
    Tyllianakis M; Deligianni D; Panagopoulos A; Pappas M; Sourgiadaki E; Mavrilas D; Papadopoulos A
    Med Sci Monit; 2007 May; 13(5):BR125-30. PubMed ID: 17476191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry.
    Aro HT; Wippermann BW; Hodgson SF; Wahner HW; Lewallen DG; Chao EY
    J Bone Joint Surg Am; 1989 Aug; 71(7):1020-30. PubMed ID: 2760077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.