These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20716283)

  • 21. Pro-oxidant iron is present in human pulmonary epithelial lining fluid: implications for oxidative stress in the lung.
    Gutteridge JM; Mumby S; Quinlan GJ; Chung KF; Evans TW
    Biochem Biophys Res Commun; 1996 Mar; 220(3):1024-7. PubMed ID: 8607785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of MAPK signal transduction pathway inhibitor U0126 on aquaporin 4 expression in alveolar type II cells in rats with oleic acid-induced acute lung injury].
    Chen CL; Li TP; Zhu LH
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 Aug; 29(8):1525-8. PubMed ID: 19726282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in plasma gelsolin concentration during acute oxidant lung injury in mice.
    Christofidou-Solomidou M; Scherpereel A; Solomides CC; Muzykantov VR; Machtay M; Albelda SM; DiNubile MJ
    Lung; 2002; 180(2):91-104. PubMed ID: 12172902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidant stress and adult respiratory distress syndrome.
    Brigham KL
    Eur Respir J Suppl; 1990 Oct; 11():482s-484s. PubMed ID: 2278607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attenuation of lipopolysaccharide-induced acute lung injury by treatment with IL-10.
    Wu CL; Lin LY; Yang JS; Chan MC; Hsueh CM
    Respirology; 2009 May; 14(4):511-21. PubMed ID: 19386070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forsterite exposure causes less oxidative DNA damage and lung injury than chrysotile exposure in rats.
    Takata A; Yamauchi H; Toya T; Aminaka M; Shinohara Y; Kohyama N; Yoshida K
    Inhal Toxicol; 2009 Aug; 21(9):739-46. PubMed ID: 19645569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of bronchus-associated lymphoid tissue hyperplasia following lipopolysaccharide-induced lung inflammation in rats.
    Bánfi A; Tiszlavicz L; Székely E; Peták F; Tóth-Szüki V; Baráti L; Bari F; Novák Z
    Exp Lung Res; 2009 Apr; 35(3):186-97. PubMed ID: 19337902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Airway epithelial dysfunction in the development of acute lung injury and acute respiratory distress syndrome.
    Wang X; Adler KB; Erjefalt J; Bai C
    Expert Rev Respir Med; 2007 Aug; 1(1):149-55. PubMed ID: 20477274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulmonary pathology of rapidly fatal transfusion-related acute lung injury reveals minimal evidence of diffuse alveolar damage or alveolar granulocyte infiltration.
    Danielson C; Benjamin RJ; Mangano MM; Mills CJ; Waxman DA
    Transfusion; 2008 Nov; 48(11):2401-8. PubMed ID: 18673344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-talk between pulmonary injury, oxidant stress, and gap junctional communication.
    Johnson LN; Koval M
    Antioxid Redox Signal; 2009 Feb; 11(2):355-67. PubMed ID: 18816185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidants and redox signaling in acute lung injury.
    Sarma JV; Ward PA
    Compr Physiol; 2011 Jul; 1(3):1365-81. PubMed ID: 23733646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome.
    Tasaka S; Amaya F; Hashimoto S; Ishizaka A
    Antioxid Redox Signal; 2008 Apr; 10(4):739-53. PubMed ID: 18179359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Severe physical exertion, oxidative stress, and acute lung injury.
    Shah NR; Iqbal MB; Barlow A; Bayliss J
    Clin J Sport Med; 2011 Nov; 21(6):537-8. PubMed ID: 22064719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monocyte-derived Alveolar Macrophages: The Dark Side of Lung Repair?
    McQuattie-Pimentel AC; Budinger GRS; Ballinger MN
    Am J Respir Cell Mol Biol; 2018 Jan; 58(1):5-6. PubMed ID: 29286855
    [No Abstract]   [Full Text] [Related]  

  • 35. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury.
    Zemans RL; Colgan SP; Downey GP
    Am J Respir Cell Mol Biol; 2009 May; 40(5):519-35. PubMed ID: 18978300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology.
    Massey VL; Beier JI; Ritzenthaler JD; Roman J; Arteel GE
    Biomolecules; 2015 Sep; 5(4):2477-503. PubMed ID: 26437442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lung Repair and Regeneration in ARDS: Role of PECAM1 and Wnt Signaling.
    Villar J; Zhang H; Slutsky AS
    Chest; 2019 Mar; 155(3):587-594. PubMed ID: 30392791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Conserved Distal Lung Regenerative Pathway in Acute Lung Injury.
    Taylor MS; Chivukula RR; Myers LC; Jeck WR; Waghray A; Tata PR; Selig MK; O'Donnell WJ; Farver CF; Thompson BT; Rajagopal J; Kradin RL
    Am J Pathol; 2018 May; 188(5):1149-1160. PubMed ID: 29476724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Src homolog and collagen homolog1 isoforms in acute and chronic liver injuries.
    Ma H; Wang C; Liu X; Zhan M; Wei W; Niu J
    Life Sci; 2021 May; 273():119302. PubMed ID: 33662427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of α- and β-adrenergic mechanisms in the pathogenesis of pulmonary injuries characterized by edema, inflammation and fibrosis.
    Rassler B
    Cardiovasc Hematol Disord Drug Targets; 2013 Dec; 13(3):197-207. PubMed ID: 24479719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.