BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20716686)

  • 1. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy.
    Ha CH; Kim JY; Zhao J; Wang W; Jhun BS; Wong C; Jin ZG
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15467-72. PubMed ID: 20716686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional regulation of HDAC5 by mAKAPβ signalosomes in cardiac myocytes.
    Dodge-Kafka KL; Gildart M; Li J; Thakur H; Kapiloff MS
    J Mol Cell Cardiol; 2018 May; 118():13-25. PubMed ID: 29522762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5.
    He T; Huang J; Chen L; Han G; Stanmore D; Krebs-Haupenthal J; Avkiran M; Hagenmüller M; Backs J
    J Mol Cell Cardiol; 2020 Aug; 145():88-98. PubMed ID: 32485181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Adrenergic Stimulation Induces Histone Deacetylase 5 (HDAC5) Nuclear Accumulation in Cardiomyocytes by B55α-PP2A-Mediated Dephosphorylation.
    Weeks KL; Ranieri A; Karaś A; Bernardo BC; Ashcroft AS; Molenaar C; McMullen JR; Avkiran M
    J Am Heart Assoc; 2017 Mar; 6(4):. PubMed ID: 28343149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells.
    Little GH; Bai Y; Williams T; Poizat C
    J Biol Chem; 2007 Mar; 282(10):7219-31. PubMed ID: 17179159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation-independent mechanisms.
    Haworth RS; Stathopoulou K; Candasamy AJ; Avkiran M
    Circ Res; 2012 Jun; 110(12):1585-95. PubMed ID: 22581927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agonist-induced nuclear export of GFP-HDAC5 in isolated adult rat ventricular myocytes.
    Peng Y; Lambert AA; Papst P; Pitts KR
    J Pharmacol Toxicol Methods; 2009; 59(3):135-40. PubMed ID: 19328241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute β-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays G(q)-induced transcriptional activation.
    Chang CW; Lee L; Yu D; Dao K; Bossuyt J; Bers DM
    J Biol Chem; 2013 Jan; 288(1):192-204. PubMed ID: 23161540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure.
    Bossuyt J; Helmstadter K; Wu X; Clements-Jewery H; Haworth RS; Avkiran M; Martin JL; Pogwizd SM; Bers DM
    Circ Res; 2008 Mar; 102(6):695-702. PubMed ID: 18218981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liganded peroxisome proliferator-activated receptors (PPARs) preserve nuclear histone deacetylase 5 levels in endothelin-treated Sprague-Dawley rat cardiac myocytes.
    Zhang H; Shao Z; Alibin CP; Acosta C; Anderson HD
    PLoS One; 2014; 9(12):e115258. PubMed ID: 25514029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II-induced histone deacetylase 5 phosphorylation, nuclear export, and Egr-1 expression are mediated by Akt pathway in A10 vascular smooth muscle cells.
    Truong V; Jain A; Anand-Srivastava MB; Srivastava AK
    Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1543-H1554. PubMed ID: 33606583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converse role of class I and class IIa HDACs in the progression of atrial fibrillation.
    Zhang D; Hu X; Li J; Hoogstra-Berends F; Zhuang Q; Esteban MA; de Groot N; Henning RH; Brundel BJJM
    J Mol Cell Cardiol; 2018 Dec; 125():39-49. PubMed ID: 30321539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5.
    Vega RB; Harrison BC; Meadows E; Roberts CR; Papst PJ; Olson EN; McKinsey TA
    Mol Cell Biol; 2004 Oct; 24(19):8374-85. PubMed ID: 15367659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRM1 nuclear export receptor controls pathological cardiac gene expression.
    Harrison BC; Roberts CR; Hood DB; Sweeney M; Gould JM; Bush EW; McKinsey TA
    Mol Cell Biol; 2004 Dec; 24(24):10636-49. PubMed ID: 15572669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of HDAC nuclear export and cardiomyocyte hypertrophy by novel irreversible inhibitors of CRM1.
    Monovich L; Koch KA; Burgis R; Osimboni E; Mann T; Wall D; Gao J; Feng Y; Vega RB; Turner BA; Hood DB; Law A; Papst PJ; Koditek D; Chapo JA; Reid BG; Melvin LS; Pagratis NC; McKinsey TA
    Biochim Biophys Acta; 2009 May; 1789(5):422-31. PubMed ID: 19414071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4.
    Backs J; Backs T; Bezprozvannaya S; McKinsey TA; Olson EN
    Mol Cell Biol; 2008 May; 28(10):3437-45. PubMed ID: 18332106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMRT-mediated co-shuttling enables export of class IIa HDACs independent of their CaM kinase phosphorylation sites.
    Soriano FX; Chawla S; Skehel P; Hardingham GE
    J Neurochem; 2013 Jan; 124(1):26-35. PubMed ID: 23083128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class I and IIa histone deacetylases have opposite effects on sclerostin gene regulation.
    Baertschi S; Baur N; Lueders-Lefevre V; Voshol J; Keller H
    J Biol Chem; 2014 Sep; 289(36):24995-5009. PubMed ID: 25012661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium.
    Kwon IS; Wang W; Xu S; Jin ZG
    Cardiovasc Res; 2014 Oct; 104(1):127-37. PubMed ID: 25096223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5.
    Chawla S; Vanhoutte P; Arnold FJ; Huang CL; Bading H
    J Neurochem; 2003 Apr; 85(1):151-9. PubMed ID: 12641737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.