These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20717260)

  • 1. Holographic writing and erasure in unipolar photorefractive materials with multiple active centers: theoretical analysis.
    Jariego F; Agulló-López F
    Appl Opt; 1991 Nov; 30(32):4615-21. PubMed ID: 20717260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erasure of holographic gratings in photorefractive materials with two active species.
    Carrascosa M; Agullo-Lopez F
    Appl Opt; 1988 Jul; 27(14):2851-7. PubMed ID: 20531852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical gain by a simple photoisomerization process.
    Gallego-Gómez F; del Monte F; Meerholz K
    Nat Mater; 2008 Jun; 7(6):490-7. PubMed ID: 18454152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording and erasure of photorefractive holograms in undoped BTO crystal at moderate to high intensities of 639.7  nm laser under action of 532  nm laser pre-illumination.
    Lopes WR; Medeiros HFA; Santos GS; Araujo TC; Carvalho JF; Dos Santos PV; de Araujo MT
    J Opt Soc Am A Opt Image Sci Vis; 2018 Nov; 35(11):1919-1928. PubMed ID: 30461852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large interconnects in photorefractives: grating erasure problem and a proposed solution.
    Rastani K; Hubbard WM
    Appl Opt; 1992 Feb; 31(5):598-605. PubMed ID: 20720654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An updatable holographic three-dimensional display.
    Tay S; Blanche PA; Voorakaranam R; Tunç AV; Lin W; Rokutanda S; Gu T; Flores D; Wang P; Li G; St Hilaire P; Thomas J; Norwood RA; Yamamoto M; Peyghambarian N
    Nature; 2008 Feb; 451(7179):694-8. PubMed ID: 18256667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reading and optical erasure of holograms stored by the photorefractive effect in lithium niobate.
    Moharam MG; Young L
    Appl Opt; 1978 Sep; 17(17):2773-8. PubMed ID: 20203865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4339-44. PubMed ID: 20935791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Holographic recording properties of BR-D96N film].
    Zheng Y; Yao BL; Wang YL; Lei M; Menke N; Cheng GF; Hampp N
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Jun; 35(6):592-5. PubMed ID: 12796823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Holographic Recording and Spontaneous Erasure Processes in Light-Sensitive Liquid Crystal Elastomers.
    Gregorc M; Li H; Domenici V; Ambrožič G; Čopič M; Drevenšek-Olenik I
    Materials (Basel); 2012 Apr; 5(5):741-753. PubMed ID: 28817006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal operator formalism for holographic recording and diffraction in a photorefractive-based true-time-delay phased-array processor.
    Kiruluta A; Pati GS; Kriehn G; Silveira PE; Sarto AW; Wagner K
    Appl Opt; 2003 Sep; 42(26):5334-50. PubMed ID: 14503701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Talbot effect by a photorefractive volume phase grating.
    Forte G; Lencina A; Tebaldi M; Bolognini N
    Appl Opt; 2012 Feb; 51(4):479-85. PubMed ID: 22307118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination.
    Mecher E; Gallego-Gómez F; Tillmann H; Hörhold HH; Hummelen JC; Meerholz K
    Nature; 2002 Aug; 418(6901):959-64. PubMed ID: 12198543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical implementation of a wavelet transform by the use of dynamic holographic recording in a photorefractive material.
    Joseph J; Oura T; Minemoto T
    Appl Opt; 1995 Jul; 34(20):3997-4003. PubMed ID: 21052222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Multiplexed real time permanent holographic recording in photorefractive BSO.
    Vainos NA; Clapham SL; Eason RW
    Appl Opt; 1989 Oct; 28(20):4386-92. PubMed ID: 20555881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric Extension of the Classical Exposure-Schedule Theory for Angle-Multiplexed Photorefractive Recording over Wide Angles.
    Delong ML; Duncan BD; Parker JH
    Appl Opt; 1998 May; 37(14):3015-30. PubMed ID: 18273248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of photopolymerization by a holographic technique applied to a scattering hydrogel.
    Jordan OP; Marquis-Weible F
    Appl Opt; 1996 Nov; 35(31):6146-50. PubMed ID: 21127633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moving grating for enhanced holographic recording in cerium-doped Sr(0.6)Ba(0.4)Nb(2)O(6).
    Ma J; Ford JE; Taketomi Y; Lee SH
    Opt Lett; 1991 Feb; 16(4):270-2. PubMed ID: 19773905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides.
    Villarroel J; Carnicero J; Luedtke F; Carrascosa M; García-Cabañes A; Cabrera JM; Alcazar A; Ramiro B
    Opt Express; 2010 Sep; 18(20):20852-61. PubMed ID: 20940980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective erasure of speckle-multiplexed holograms by use of a double Mach-Zehnder interferometric arrangement.
    Bunsen M; Furuta H; Okamoto A
    Appl Opt; 2006 Sep; 45(27):7035-42. PubMed ID: 16946782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.