These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20717300)

  • 41. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.
    Nájera JJ; Fochesatto JG; Last DJ; Percival CJ; Horn AB
    Rev Sci Instrum; 2008 Dec; 79(12):124102. PubMed ID: 19123581
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calibration of Polarization-Sensitive and Dual-Angle Laser Light Scattering Methods Using Standard Latex Particles.
    Shimada M; Chang H; Fujishige Y; Okuyama K
    J Colloid Interface Sci; 2001 Sep; 241(1):71-80. PubMed ID: 11502109
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Full-field measurements of particle size distributions. II: experimental comparison of the polarization ratio and scattered intensity methods.
    Hofeldt DL
    Appl Opt; 1993 Dec; 32(36):7559-67. PubMed ID: 20861976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Particle sizing by means of the forward scattering lobe.
    Hodkinson JR
    Appl Opt; 1966 May; 5(5):839-44. PubMed ID: 20048958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy.
    Tanguchi J; Murata H; Okamura Y
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):137-44. PubMed ID: 19914810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molar mass and molar mass distribution of polystyrene particle size standards.
    Peng WP; Yang YC; Lin CW; Chang HC
    Anal Chem; 2005 Nov; 77(21):7084-9. PubMed ID: 16255614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. General solution to the inverse near-forward-scattering particle-sizing problem in multiple-scattering environments: theory.
    Hirleman ED
    Appl Opt; 1991 Nov; 30(33):4832-8. PubMed ID: 20717286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media.
    Kristensson E; Araneo L; Berrocal E; Manin J; Richter M; Aldén M; Linne M
    Opt Express; 2011 Jul; 19(14):13647-63. PubMed ID: 21747521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mixing at the external boundary of a submerged turbulent jet.
    Eidelman A; Elperin T; Kleeorin N; Hazak G; Rogachevskii I; Sadot O; Sapir-Katiraie I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026311. PubMed ID: 19391844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure.
    Baalousha M; Lead JR
    Environ Sci Technol; 2012 Jun; 46(11):6134-42. PubMed ID: 22594655
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potential for application of an acoustic camera in particle tracking velocimetry.
    Wu FC; Shao YC; Wang CK; Liou J
    Rev Sci Instrum; 2008 Nov; 79(11):116102. PubMed ID: 19045915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, part 1: collimated laser sheets.
    Kalt PA; Birzer CH; Nathan GJ
    Appl Opt; 2007 Aug; 46(23):5823-34. PubMed ID: 17694131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monotonic relationships between scattered powers and diameters in Lorenz-Mie theory for simultaneous velocimetry and sizing of single particles.
    Grehan G; Gouesbet G; Rabasse C
    Appl Opt; 1981 Mar; 20(5):796-9. PubMed ID: 20309206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical correlation method for studying disperse media.
    Angelsky OV; Maksimyak PP
    Appl Opt; 1993 Oct; 32(30):6137-41. PubMed ID: 20856442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photographic observation and optical simulation of a pollen corona display in Japan.
    Hioki S; Iwabuchi H
    Appl Opt; 2015 Feb; 54(4):B12-21. PubMed ID: 25967818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel Approach for Reliable Determination of the Refractive Index of Particles in the Liquid Phase Using a Hybrid Flow Particle Tracking Method.
    Matsuura Y; Nakamura A; Kato H
    Anal Chem; 2020 Apr; 92(8):5994-6002. PubMed ID: 32227884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Method for the time-resolved measurement of the size and position of a moving particle using an image sensor.
    Harada Y; Murakami T
    Appl Opt; 1991 Nov; 30(33):4921-9. PubMed ID: 20717298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Particle sizing by inversion of the optical transform pattern.
    Coston SD; George N
    Appl Opt; 1991 Nov; 30(33):4785-94. PubMed ID: 20717281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.