These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 20717415)

  • 21. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria.
    Kotlarchyk M; Chen SH; Asano S
    Appl Opt; 1979 Jul; 18(14):2470-9. PubMed ID: 20212685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    Weroński P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extinction of oscillating populations.
    Smith NR; Meerson B
    Phys Rev E; 2016 Mar; 93(3):032109. PubMed ID: 27078294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytic approximation to randomly oriented spheroid extinction.
    Evans BT; Fournier GR
    Appl Opt; 1994 Aug; 33(24):5796-804. PubMed ID: 20935982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demonstration of metaplectic geometrical optics for reduced modeling of plasma waves.
    Højlund Marholt R; Senstius MG; Nielsen SK
    Phys Rev E; 2024 Aug; 110(2-2):025208. PubMed ID: 39294984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Foundations of the Wentzel-Kramers-Brillouin approximation for models of cochlear mechanics in 1- and 2-D.
    Frost BL
    J Acoust Soc Am; 2024 Jan; 155(1):358-379. PubMed ID: 38236807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering.
    Johnsen S; Widder EA
    J Theor Biol; 1999 Jul; 199(2):181-98. PubMed ID: 10395813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approximation to extinction efficiency for randomly oriented spheroids.
    Fournier GR; Evans BT
    Appl Opt; 1991 May; 30(15):2042-8. PubMed ID: 20700173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra.
    Bi L; Yang P; Kattawar GW; Kahn R
    Appl Opt; 2010 Jan; 49(3):334-42. PubMed ID: 20090797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Taming the diffusion approximation through a controlling-factor WKB method.
    Pande J; Shnerb NM
    Phys Rev E; 2020 Dec; 102(6-1):062410. PubMed ID: 33466058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light scattering by polydisperse suspensions of inhomogeneous nonspherical particles.
    Wang DS; Chen HC; Barber PW; Wyatt PJ
    Appl Opt; 1979 Aug; 18(15):2672-8. PubMed ID: 20212727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral reflectance and emittance of particulate materials. 1: theory.
    Emslie AG; Aronson JR
    Appl Opt; 1973 Nov; 12(11):2563-72. PubMed ID: 20125831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations.
    Chyýlek P; Srivastava V; Pinnick RG; Wang RT
    Appl Opt; 1988 Jun; 27(12):2396-404. PubMed ID: 20531771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle sizing by means of the forward scattering lobe.
    Hodkinson JR
    Appl Opt; 1966 May; 5(5):839-44. PubMed ID: 20048958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods for describing the electromagnetic properties of silver and gold nanoparticles.
    Zhao J; Pinchuk AO; McMahon JM; Li S; Ausman LK; Atkinson AL; Schatz GC
    Acc Chem Res; 2008 Dec; 41(12):1710-20. PubMed ID: 18712883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approximations to extinction from randomly oriented circular and elliptical cylinders.
    Fournier GR; Evans BT
    Appl Opt; 1996 Jul; 35(21):4271-82. PubMed ID: 21102836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extinction, absorption, and scattering of light by plasmonic spheres embedded in an absorbing host medium.
    Khlebtsov NG
    Phys Chem Chem Phys; 2021 Oct; 23(40):23141-23157. PubMed ID: 34617525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bridging technique for calculating the extinction efficiency of arbitrary shaped particles.
    Zhao JQ; Hu YQ
    Appl Opt; 2003 Aug; 42(24):4937-45. PubMed ID: 12952341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.