These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20717426)

  • 61. Extreme nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires.
    Ung B; Skorobogatiy M
    Opt Lett; 2011 Jul; 36(13):2527-9. PubMed ID: 21725468
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons.
    Wan X; Wang Q; Tao H
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):973-6. PubMed ID: 20448762
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.
    Fan C; Shi F; Wu H; Chen Y
    Opt Lett; 2015 Jun; 40(11):2449-52. PubMed ID: 26030529
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Deep-subwavelength plasmonic nanoresonators exploiting extreme coupling.
    Alaee R; Menzel C; Huebner U; Pshenay-Severin E; Bin Hasan S; Pertsch T; Rockstuhl C; Lederer F
    Nano Lett; 2013 Aug; 13(8):3482-6. PubMed ID: 23805879
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fractal H-shaped plasmonic nanocavity.
    Li G; Chen X; Ni B; Li O; Huang L; Jiang Y; Hu W; Lu W
    Nanotechnology; 2013 May; 24(20):205702. PubMed ID: 23598737
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS.
    Xomalis A; Zheng X; Demetriadou A; Martínez A; Chikkaraddy R; Baumberg JJ
    Nano Lett; 2021 Mar; 21(6):2512-2518. PubMed ID: 33705151
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Opt Express; 2011 Aug; 19(18):17075-85. PubMed ID: 21935068
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides.
    Rukhlenko ID; Pannipitiya A; Premaratne M
    Opt Lett; 2011 Sep; 36(17):3374-6. PubMed ID: 21886215
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation.
    Pu Y; Grange R; Hsieh CL; Psaltis D
    Phys Rev Lett; 2010 May; 104(20):207402. PubMed ID: 20867063
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Substrate engineering of plasmonic nanocavity antenna modes.
    Xiong X; Clarke D; Lai Y; Bai P; Png CE; Wu L; Hess O
    Opt Express; 2023 Jan; 31(2):2345-2358. PubMed ID: 36785250
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties.
    Lin MH; Chen HY; Gwo S
    J Am Chem Soc; 2010 Aug; 132(32):11259-63. PubMed ID: 20698692
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Symmetry breaking in plasmonic waveguides with metal nonlinearities.
    Davoyan AR; Shadrivov IV; Kivshar YS
    Opt Lett; 2011 Mar; 36(6):930-2. PubMed ID: 21403732
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Topological edge modes in non-Hermitian plasmonic waveguide arrays.
    Ke S; Wang B; Long H; Wang K; Lu P
    Opt Express; 2017 May; 25(10):11132-11143. PubMed ID: 28788795
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays.
    Deeb C; Guo Z; Yang A; Huang L; Odom TW
    Nano Lett; 2018 Feb; 18(2):1454-1459. PubMed ID: 29369639
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Densely Distributed Multiple Resonance Modes in a Fan-Shaped Plasmonic Nanostructure Demonstrated by FEM Simulations.
    Wang Q; Ouyang Z; Liu Q; Lin M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31277376
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Subwavelength metallic cavities with high-Q resonance modes.
    Ishihara N; Kurosawa H; Takemoto R; Jahan NA; Nakajima H; Kumano H; Suemune I
    Nanotechnology; 2015 Feb; 26(8):085201. PubMed ID: 25648417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.