These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20717530)

  • 21. The chemometric study and quantitative structure retention relationship modeling of liquid chromatography separation of ziprasidone components.
    Nikolic K; Pavlovic M; Smolinski A; Agbaba D
    Comb Chem High Throughput Screen; 2012 Nov; 15(9):730-44. PubMed ID: 22934948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatographic behaviour of ionic liquid cations in view of quantitative structure-retention relationship.
    Molíková M; Markuszewski MJ; Kaliszan R; Jandera P
    J Chromatogr A; 2010 Feb; 1217(8):1305-12. PubMed ID: 20060528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacological classification and activity evaluation of furan and thiophene amide derivatives applying semi-empirical ab initio molecular modeling methods.
    Bober L; Kawczak P; Baczek T
    Int J Mol Sci; 2012; 13(6):6665-6678. PubMed ID: 22837656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative structure-chromatographic retention relationship of synthesized peptides (HGRFG, NPNPT) and their derivatives.
    Yang X; Peng H; Han N; Zhang Z; Bai X; Zhao T; Zhao J; Liu J
    Anal Biochem; 2020 May; 597():113653. PubMed ID: 32113957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative structure-retention and retention-activity relationships of some 1,3-oxazolidine systems by RP-HPTLC and PCA.
    Sârbu C; Casoni D; Darabantu M; Maiereanu C
    J Pharm Biomed Anal; 2004 Apr; 35(1):213-9. PubMed ID: 15030897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-retention relationship study of HPLC data of antiepileptic hydantoin analogues.
    Djaković-Sekulić T; Mandić A; Trisović N; Uscumlić G
    Curr Comput Aided Drug Des; 2012 Mar; 8(1):3-9. PubMed ID: 21692743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatographic retention parameters in medicinal chemistry and molecular pharmacology.
    Nasal A; Siluk D; Kaliszan R
    Curr Med Chem; 2003 Mar; 10(5):381-426. PubMed ID: 12570698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High perfomance liquid chromatography in pharmaceutical analyses.
    Nikolin B; Imamović B; Medanhodzić-Vuk S; Sober M
    Bosn J Basic Med Sci; 2004 May; 4(2):5-9. PubMed ID: 15629016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of selectivity differences for basic compounds in gradient reverse phase high performance liquid chromatography under high pH conditions by partial least squares modelling.
    Fornal E; Borman P; Luscombe C
    Anal Chim Acta; 2006 Jun; 570(2):267-76. PubMed ID: 17723408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of separation on cholesterol-silica stationary phase for high-performance liquid chromatography as revealed by analysis of quantitative structure-retention relationships.
    Al-Haj MA; Haber P; Kaliszan R; Buszewski B; Jezierska M; Chilmonzyk Z
    J Pharm Biomed Anal; 1998 Dec; 18(4-5):721-8. PubMed ID: 9919974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships.
    Kaliszan R; van Straten MA; Markuszewski M; Cramers CA; Claessens HA
    J Chromatogr A; 1999 Sep; 855(2):455-86. PubMed ID: 10519086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Various Chromatographic Systems for Identification of Vortioxetine in Bulk Drug Substance, Human Serum, Saliva, and Urine Samples by HPLC-DAD and LC-QTOF-MS.
    Petruczynik A; Wróblewski K; Wojtanowski K; Mroczek T; Juchnowicz D; Karakuła-Juchnowicz H; Tuzimski T
    Molecules; 2020 May; 25(11):. PubMed ID: 32471141
    [No Abstract]   [Full Text] [Related]  

  • 33. Principal component analysis of nonlinear chromatography.
    Pate ME; Turner MK; Thornhill NF; Titchener-Hooker NJ
    Biotechnol Prog; 2004; 20(1):215-22. PubMed ID: 14763845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity oriented high-throughput screening of 1,3,4-oxadiazole modified chlorophenylureas and halogenobenzamides by HPLC with peptidomimetic calixarene-bonded stationary phases.
    Bazylak G; Malak A; Ali I; Borowiak T; Dutkiewicz G
    Curr Drug Discov Technol; 2008 Jun; 5(2):177-89. PubMed ID: 18673258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of 2D-HPLC coupled with principal component analysis to study an industrial opiate processing stream.
    Stevenson PG; Burns NK; Purcell SD; Francis PS; Barnett NW; Fry F; Conlan XA
    Talanta; 2017 May; 166():119-125. PubMed ID: 28213211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases.
    Dąbrowska M; Starek M; Komsta Ł; Szafrański P; Stasiewicz-Urban A; Opoka W
    Eur J Pharm Sci; 2017 Apr; 101():115-124. PubMed ID: 28137472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography.
    Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B
    J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enantiomeric separation of isochromene derivatives by high-performance liquid chromatography using cyclodextrin based stationary phases and principal component analysis of the separation data.
    Nanayakkara YS; Woods RM; Breitbach ZS; Handa S; Slaughter LM; Armstrong DW
    J Chromatogr A; 2013 Aug; 1305():94-101. PubMed ID: 23906806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multivariate assessment of anticancer oleanane triterpenoids lipophilicity.
    Pastewska M; Bednarczyk-Cwynar B; Kovačević S; Buławska N; Ulenberg S; Georgiev P; Kapica H; Kawczak P; Bączek T; Sawicki W; Ciura K
    J Chromatogr A; 2021 Oct; 1656():462552. PubMed ID: 34571283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipophilicity of porphyrins and their retention in IAM, C8-C18 and HILIC chromatographic systems.
    Essaid D; Chaminade P; Maillard P; Kasselouri A
    J Pharm Biomed Anal; 2015 Oct; 114():227-40. PubMed ID: 26099259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.