These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20718272)

  • 1. Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner.
    De Momi E; Ferrigno G
    Proc Inst Mech Eng H; 2010; 224(5):715-27. PubMed ID: 20718272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensors management in robotic neurosurgery: the ROBOCAST project.
    Vaccarella A; Comparetti MD; Enquobahrie A; Ferrigno G; De Momi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2119-22. PubMed ID: 22254756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular multiple sensors information management for computer-integrated surgery.
    Vaccarella A; Enquobahrie A; Ferrigno G; Momi ED
    Int J Med Robot; 2012 Sep; 8(3):253-60. PubMed ID: 22407822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic cardiovascular surgery.
    Kypson AP; Chitwood WR
    Expert Rev Med Devices; 2006 May; 3(3):335-43. PubMed ID: 16681455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Surgical robotics in neurosurgery].
    Haidegger T; Benyó Z
    Orv Hetil; 2009 Sep; 150(36):1701-11. PubMed ID: 19709985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction.
    Cunha-Cruz V; Follmann A; Popovic A; Bast P; Wu T; Heger S; Engelhardt M; Schmieder K; Radermacher K
    Proc Inst Mech Eng H; 2010; 224(3):441-52. PubMed ID: 20408489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery.
    Joskowicz L; Shamir R; Freiman M; Shoham M; Zehavi E; Umansky F; Shoshan Y
    Comput Aided Surg; 2006 Jul; 11(4):181-93. PubMed ID: 17038306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring.
    Comparetti MD; Vaccarella A; Dyagilev I; Shoham M; Ferrigno G; De Momi E
    Proc Inst Mech Eng H; 2012 May; 226(5):347-59. PubMed ID: 22720387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
    Ko S; Nakazawa A; Kurose Y; Harada K; Mitsuishi M; Sora S; Shono N; Nakatomi H; Saito N; Morita A
    Neurosurg Focus; 2017 May; 42(5):E5. PubMed ID: 28463616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.
    Marcus HJ; Hughes-Hallett A; Cundy TP; Yang GZ; Darzi A; Nandi D
    Neurosurg Rev; 2015 Apr; 38(2):367-71; discussion 371. PubMed ID: 25516094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient motion tracking in the presence of measurement errors.
    Haidegger T; Benyó Z; Kazanzides P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5563-6. PubMed ID: 19964394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic MIS.
    Mylonas GP; Kwok KW; James DR; Leff D; Orihuela-Espina F; Darzi A; Yang GZ
    Med Image Anal; 2012 Apr; 16(3):612-31. PubMed ID: 20889367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic Applications in Cranial Neurosurgery: Current and Future.
    Ball T; González-Martínez J; Zemmar A; Sweid A; Chandra S; VanSickle D; Neimat JS; Jabbour P; Wu C
    Oper Neurosurg (Hagerstown); 2021 Nov; 21(6):371-379. PubMed ID: 34192764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraoperative stereoscopic QuickTime Virtual Reality.
    Balogh A; Preul MC; Schornak M; Hickman M; Spetzler RF
    J Neurosurg; 2004 Apr; 100(4):591-6. PubMed ID: 15070110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.