These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20718439)

  • 1. Continuous shape- and spectroscopy-tuning of hematite nanocrystals.
    Chen L; Yang X; Chen J; Liu J; Wu H; Zhan H; Liang C; Wu M
    Inorg Chem; 2010 Sep; 49(18):8411-20. PubMed ID: 20718439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, growth mechanism, and characterization of α-Fe(2)O(3) nanorods.
    Pradhan GK; Parida KM
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):317-23. PubMed ID: 21214197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization.
    Nguyen TD; Do TO
    Langmuir; 2009 May; 25(9):5322-32. PubMed ID: 19301841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative investigation of the performances of hematite nanoplates and nanograins in lithium-ion batteries.
    Lu F; Wu Q; Yang X; Chen L; Cai J; Liang C; Wu M; Shen P
    Phys Chem Chem Phys; 2013 Jun; 15(24):9768-74. PubMed ID: 23673457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase.
    Sun X; Zhang YW; Du YP; Yan ZG; Si R; You LP; Yan CH
    Chemistry; 2007; 13(8):2320-32. PubMed ID: 17163562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations.
    Yin AX; Liu WC; Ke J; Zhu W; Gu J; Zhang YW; Yan CH
    J Am Chem Soc; 2012 Dec; 134(50):20479-89. PubMed ID: 23181397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic synthesis of lanthanide phosphate nanocrystals.
    Huo Z; Chen C; Chu D; Li H; Li Y
    Chemistry; 2007; 13(27):7708-14. PubMed ID: 17582815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [FTIR study of adsorption of PCP on hematite surface].
    Fang JM; Li SH; Gong WQ; Sun ZY; Yang HG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):318-21. PubMed ID: 19445194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the Shape and Structure Control of Monodispersed alpha-Fe2O3 Particles by Sulfate Ions.
    Sugimoto T; Wang Y
    J Colloid Interface Sci; 1998 Nov; 207(1):137-149. PubMed ID: 9778401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties.
    Ouyang J; Pei J; Kuang Q; Xie Z; Zheng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12505-14. PubMed ID: 25003988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals.
    Tang A; Qu S; Li K; Hou Y; Teng F; Cao J; Wang Y; Wang Z
    Nanotechnology; 2010 Jul; 21(28):285602. PubMed ID: 20562487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template.
    Zhao L; Yu J
    J Colloid Interface Sci; 2006 Dec; 304(1):84-91. PubMed ID: 16989852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.
    Hao H; Sun D; Xu Y; Liu P; Zhang G; Sun Y; Gao D
    J Colloid Interface Sci; 2016 Jan; 462():315-24. PubMed ID: 26476200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.
    Zhao P; Wu F; Kronawitter CX; Chen Z; Yao N; Koel BE
    Phys Chem Chem Phys; 2015 Oct; 17(40):26797-803. PubMed ID: 26395868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties.
    Lian J; Duan X; Ma J; Peng P; Kim T; Zheng W
    ACS Nano; 2009 Nov; 3(11):3749-61. PubMed ID: 19877695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach.
    Shen X; Wu S; Liu Y; Wang K; Xu Z; Liu W
    J Colloid Interface Sci; 2009 Jan; 329(1):188-95. PubMed ID: 18950787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties.
    Mai HX; Zhang YW; Si R; Yan ZG; Sun LD; You LP; Yan CH
    J Am Chem Soc; 2006 May; 128(19):6426-36. PubMed ID: 16683808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3.
    Lu L; Li L; Wang X; Li G
    J Phys Chem B; 2005 Sep; 109(36):17151-6. PubMed ID: 16853187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.