These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20718441)

  • 41. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection.
    Le Ru EC; Etchegoin PG; Meyer M
    J Chem Phys; 2006 Nov; 125(20):204701. PubMed ID: 17144717
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP
    Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application.
    Goh MS; Lee YH; Pedireddy S; Phang IY; Tjiu WW; Tan JM; Ling XY
    Langmuir; 2012 Oct; 28(40):14441-9. PubMed ID: 22970778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmon Near-Field Coupling of Bimetallic Nanostars and a Hierarchical Bimetallic SERS "Hot Field": Toward Ultrasensitive Simultaneous Detection of Multiple Cardiorenal Syndrome Biomarkers.
    Su Y; Xu S; Zhang J; Chen X; Jiang LP; Zheng T; Zhu JJ
    Anal Chem; 2019 Jan; 91(1):864-872. PubMed ID: 30499654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A perspective on single molecule SERS: current status and future challenges.
    Etchegoin PG; Le Ru EC
    Phys Chem Chem Phys; 2008 Oct; 10(40):6079-89. PubMed ID: 18846295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surface-Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays.
    Wang X; Park SG; Ko J; Xiao X; Giannini V; Maier SA; Kim DH; Choo J
    Small; 2018 Sep; 14(39):e1801623. PubMed ID: 30062764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.
    Qian XM; Nie SM
    Chem Soc Rev; 2008 May; 37(5):912-20. PubMed ID: 18443676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-molecule SERS detection of C60.
    Artur CG; Miller R; Meyer M; Le Ru EC; Etchegoin PG
    Phys Chem Chem Phys; 2012 Mar; 14(9):3219-25. PubMed ID: 22286367
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular states and spin crossover of hemin studied by DNA origami enabled single-molecule surface-enhanced Raman scattering.
    Dutta A; Tapio K; Suma A; Mostafa A; Kanehira Y; Carnevale V; Bussi G; Bald I
    Nanoscale; 2022 Nov; 14(44):16467-16478. PubMed ID: 36305892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SERS Assay for Copper(II) Ions Based on Dual Hot-Spot Model Coupling with MarR Protein: New Cu
    Wang Y; Su Z; Wang L; Dong J; Xue J; Yu J; Wang Y; Hua X; Wang M; Zhang C; Liu F
    Anal Chem; 2017 Jun; 89(12):6392-6398. PubMed ID: 28594539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy.
    Wilson AJ; Willets KA
    Nano Lett; 2014 Feb; 14(2):939-45. PubMed ID: 24460095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS.
    Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK
    Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface-enhanced Raman scattering: a powerful tool for chemical identification.
    Kim K; Shin KS
    Anal Sci; 2011; 27(8):775-83. PubMed ID: 21828913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.