These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Atomistic study on dopant-distributions in realistically sized, highly P-doped Si nanowires. Ryu H; Kim J; Hong KH Nano Lett; 2015 Jan; 15(1):450-6. PubMed ID: 25555203 [TBL] [Abstract][Full Text] [Related]
5. Quantum-confined nanowires as vehicles for enhanced electrical transport. Mohammad SN Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637 [TBL] [Abstract][Full Text] [Related]
6. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire. Pan H Nanoscale Res Lett; 2014; 9(1):531. PubMed ID: 25294975 [TBL] [Abstract][Full Text] [Related]
7. Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements. Ulbricht R; Kurstjens R; Bonn M Nano Lett; 2012 Jul; 12(7):3821-7. PubMed ID: 22738182 [TBL] [Abstract][Full Text] [Related]
8. Experimental study on the subthreshold swing of silicon nanowire transistors. Zhang Y; Xiong Y; Yang X; Wang Y; Han W; Yang F J Nanosci Nanotechnol; 2010 Nov; 10(11):7113-6. PubMed ID: 21137876 [TBL] [Abstract][Full Text] [Related]
9. Ab initio study of phosphorus donors acting as quantum bits in silicon nanowires. Yan B; Rurali R; Gali A Nano Lett; 2012 Jul; 12(7):3460-5. PubMed ID: 22694292 [TBL] [Abstract][Full Text] [Related]
10. Simulation Analysis on Photoelectric Conversion Characteristics of Silicon Nanowire Array Photoelectrodes. Zhao Y; Yu J; Fang LG; Zheng J; Wang HQ; Yuan JR; Wu S; Cheng GA Nanoscale Res Lett; 2015 Dec; 10(1):985. PubMed ID: 26123274 [TBL] [Abstract][Full Text] [Related]
11. Electronic properties of pristine and Se doped [001] silicon nanowires: an ab initio study. Petretto G; Debernardi A; Fanciulli M J Nanosci Nanotechnol; 2012 Nov; 12(11):8704-9. PubMed ID: 23421270 [TBL] [Abstract][Full Text] [Related]
12. Bias dependence of sub-bandgap light detection for core-shell silicon nanowires. Zhou Y; Liu YH; Cheng J; Lo YH Nano Lett; 2012 Nov; 12(11):5929-35. PubMed ID: 23098159 [TBL] [Abstract][Full Text] [Related]
14. Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. Markussen T; Rurali R; Jauho AP; Brandbyge M Phys Rev Lett; 2007 Aug; 99(7):076803. PubMed ID: 17930915 [TBL] [Abstract][Full Text] [Related]
15. In situ axially doped n-channel silicon nanowire field-effect transistors. Ho TT; Wang Y; Eichfeld S; Lew KK; Liu B; Mohney SE; Redwing JM; Mayer TS Nano Lett; 2008 Dec; 8(12):4359-64. PubMed ID: 19367848 [TBL] [Abstract][Full Text] [Related]
16. Laser direct synthesis of silicon nanowire field effect transistors. Nam W; Mitchell JI; Ye PD; Xu X Nanotechnology; 2015 Feb; 26(5):055306. PubMed ID: 25590692 [TBL] [Abstract][Full Text] [Related]
17. Field-effect transistors fabricated from diluted magnetic semiconductor colloidal nanowires. Li Z; Du AJ; Sun Q; Aljada M; Zhu ZH; Lu GQ Nanoscale; 2012 Feb; 4(4):1263-6. PubMed ID: 22241294 [TBL] [Abstract][Full Text] [Related]
18. Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO König D; Frentzen M; Wilck N; Berghoff B; Píš I; Nappini S; Bondino F; Müller M; Gonzalez S; Di Santo G; Petaccia L; Mayer J; Smith S; Knoch J ACS Appl Mater Interfaces; 2021 May; 13(17):20479-20488. PubMed ID: 33878265 [TBL] [Abstract][Full Text] [Related]
19. Electronic level scheme in boron- and phosphorus-doped silicon nanowires. Sato K; Castaldini A; Fukata N; Cavallini A Nano Lett; 2012 Jun; 12(6):3012-7. PubMed ID: 22545949 [TBL] [Abstract][Full Text] [Related]
20. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. Li J; Zhang Y; To S; You L; Sun Y ACS Nano; 2011 Aug; 5(8):6661-8. PubMed ID: 21815637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]