These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20718483)

  • 21. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures.
    Funk S; Royo M; Zardo I; Rudolph D; Morkötter S; Mayer B; Becker J; Bechtold A; Matich S; Döblinger M; Bichler M; Koblmüller G; Finley JJ; Bertoni A; Goldoni G; Abstreiter G
    Nano Lett; 2013; 13(12):6189-96. PubMed ID: 24274328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatically Doped Silicon Nanowire Arrays for Multispectral Photodetectors.
    Um HD; Solanki A; Jayaraman A; Gordon RG; Habbal F
    ACS Nano; 2019 Oct; 13(10):11717-11725. PubMed ID: 31577128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon nanowire band gap modification.
    Nolan M; O'Callaghan S; Fagas G; Greer JC; Frauenheim T
    Nano Lett; 2007 Jan; 7(1):34-8. PubMed ID: 17212436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optically abrupt localized surface plasmon resonances in si nanowires by mitigation of carrier density gradients.
    Chou LW; Boyuk DS; Filler MA
    ACS Nano; 2015 Feb; 9(2):1250-6. PubMed ID: 25612192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organo-arsenic molecular layers on silicon for high-density doping.
    O'Connell J; Verni GA; Gangnaik A; Shayesteh M; Long B; Georgiev YM; Petkov N; McGlacken GP; Morris MA; Duffy R; Holmes JD
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15514-21. PubMed ID: 26111734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confinement and surface effects in B and P doping of silicon nanowires.
    Leao CR; Fazzio A; da Silva AJ
    Nano Lett; 2008 Jul; 8(7):1866-71. PubMed ID: 18529083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low Trap Density in InAs/High-k Nanowire Gate Stacks with Optimized Growth and Doping Conditions.
    Wu J; Babadi AS; Jacobsson D; Colvin J; Yngman S; Timm R; Lind E; Wernersson LE
    Nano Lett; 2016 Apr; 16(4):2418-25. PubMed ID: 26978479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Device Noise Reduction for Silicon Nanowire Field-Effect-Transistor Based Sensors by Using a Schottky Junction Gate.
    Chen X; Chen S; Hu Q; Zhang SL; Solomon P; Zhang Z
    ACS Sens; 2019 Feb; 4(2):427-433. PubMed ID: 30632733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Method to Fabricate Silicon Nanowire p-n Junctions by a Combination of Ion Implantation and in-situ Doping.
    Kanungo P; Kögler R; Werner P; Gösele U; Skorupa W
    Nanoscale Res Lett; 2009 Nov; 5(1):243-6. PubMed ID: 20651924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface segregation and backscattering in doped silicon nanowires.
    Fernández-Serra MV; Adessi Ch; Blase X
    Phys Rev Lett; 2006 Apr; 96(16):166805. PubMed ID: 16712258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalyst-free growth of single-crystal silicon and germanium nanowires.
    Kim BS; Koo TW; Lee JH; Kim DS; Jung YC; Hwang SW; Choi BL; Lee EK; Kim JM; Whang D
    Nano Lett; 2009 Feb; 9(2):864-9. PubMed ID: 19159250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.
    Sun Z; Hazut O; Huang BC; Chiu YP; Chang CS; Yerushalmi R; Lauhon LJ; Seidman DN
    Nano Lett; 2016 Jul; 16(7):4490-500. PubMed ID: 27351447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High performance horizontal gate-all-around silicon nanowire field-effect transistors.
    Shirak O; Shtempluck O; Kotchtakov V; Bahir G; Yaish YE
    Nanotechnology; 2012 Oct; 23(39):395202. PubMed ID: 22971804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates.
    Guerrera SA; Akinwande AI
    Nanotechnology; 2016 Jul; 27(29):295302. PubMed ID: 27292120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical properties of individual ZnO nanowires.
    Sakurai M; Wang YG; Uemura T; Aono M
    Nanotechnology; 2009 Apr; 20(15):155203. PubMed ID: 19420542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating.
    Fonoberov VA; Balandin AA
    Nano Lett; 2006 Nov; 6(11):2442-6. PubMed ID: 17090071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silicon nanowire optical waveguide (SNOW).
    Khorasaninejad M; Saini SS
    Opt Express; 2010 Oct; 18(22):23442-57. PubMed ID: 21164687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab Initio Study of Octane Moiety Adsorption on H- and Cl-Functionalized Silicon Nanowires.
    Ferrucci B; Buonocore F; Giusepponi S; Shalabny A; Bashouti MY; Celino M
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.