These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20718637)

  • 41. Asbestos-induced endothelial cell activation and injury. Demonstration of fiber phagocytosis and oxidant-dependent toxicity.
    Garcia JG; Gray LD; Dodson RF; Callahan KS
    Am Rev Respir Dis; 1988 Oct; 138(4):958-64. PubMed ID: 3202471
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mineralogic parameters related to amosite asbestos-induced fibrosis in humans.
    Churg A; Wright J; Wiggs B; Depaoli L
    Am Rev Respir Dis; 1990 Dec; 142(6 Pt 1):1331-6. PubMed ID: 2174656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid short-term clearance of chrysotile compared with amosite asbestos in the guinea pig.
    Churg A; Wright JL; Gilks B; DePaoli L
    Am Rev Respir Dis; 1989 Apr; 139(4):885-90. PubMed ID: 2539032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors.
    Gilmour PS; Brown DM; Beswick PH; MacNee W; Rahman I; Donaldson K
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1313-7. PubMed ID: 9400744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supercoiled plasmid DNA as a model target for assessing the generation of free radicals at the surface of fibres.
    Donaldson K; Gilmour PS; Beswick PH
    Exp Toxicol Pathol; 1995 Sep; 47(4):235-7. PubMed ID: 8855117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cytotoxicity of oxidants and asbestos fibers in cultured human mesothelial cells.
    Kinnula VL; Aalto K; Raivio KO; Walles S; Linnainmaa K
    Free Radic Biol Med; 1994 Feb; 16(2):169-76. PubMed ID: 8005512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of size fractionation on the toxicity of amosite and Libby amphibole asbestos.
    Duncan KE; Ghio AJ; Dailey LA; Bern AM; Gibbs-Flournoy EA; Padilla-Carlin DJ; Roggli VL; Devlin RB
    Toxicol Sci; 2010 Dec; 118(2):420-34. PubMed ID: 20855422
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide (NO) synthase activity in the lung and NO synthesis in alveolar macrophages of rats increased on exposure to asbestos.
    Iguchi H; Kojo S; Ikeda M
    J Appl Toxicol; 1996; 16(4):309-15. PubMed ID: 8854217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analytical transmission electron microscopy of amosite asbestos from South Africa.
    Germine M; Puffer JH
    Arch Environ Occup Health; 2020; 75(1):36-44. PubMed ID: 30702033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).
    Martin J; Beauparlant M; Sauvé S; L'Espérance G
    J Occup Environ Hyg; 2016 Dec; 13(12):924-935. PubMed ID: 27224852
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis.
    Panduri V; Weitzman SA; Chandel N; Kamp DW
    Am J Respir Cell Mol Biol; 2003 Feb; 28(2):241-8. PubMed ID: 12540492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lung Biopersistence and in Vitro Dissolution Rate Predict the Pathogenic Potential of Synthetic Vitreous Fibers.
    Hesterberg TW; Hart GA
    Inhal Toxicol; 2000 Jan; 12 Suppl 3():91-7. PubMed ID: 26368604
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Smoking inhibits asbestos clearance.
    McFadden D; Wright JL; Wiggs B; Churg A
    Am Rev Respir Dis; 1986 Mar; 133(3):372-4. PubMed ID: 2869726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Asbestos exposure during uncontrolled removal of sprayed-on asbestos.
    Dumortier P; De Vuyst P
    Ann Occup Hyg; 2012 Jan; 56(1):49-54. PubMed ID: 22021818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iron associated with asbestos bodies is responsible for the formation of single strand breaks in phi X174 RFI DNA.
    Lund LG; Williams MG; Dodson RF; Aust AE
    Occup Environ Med; 1994 Mar; 51(3):200-4. PubMed ID: 8130850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection.
    Davis JM; Addison J; Bolton RE; Donaldson K; Jones AD; Smith T
    Br J Exp Pathol; 1986 Jun; 67(3):415-30. PubMed ID: 2872911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [A study of DNA damage induced by asbestos fibers in vitro].
    Zhang J; Sun C; Yao Q; Lian X; Ke F
    Hua Xi Yi Ke Da Xue Xue Bao; 1994 Sep; 25(3):333-6. PubMed ID: 7896256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correlation of in vitro and in vivo methods by means of mass dose and fiber distribution for amosite and fibrous ferroactinolite.
    Coffin DL; Palekar LD; Cook PM
    Environ Health Perspect; 1983 Sep; 51():49-53. PubMed ID: 6315381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Free radical activity of synthetic vitreous fibers: iron chelation inhibits hydroxyl radical generation by refractory ceramic fiber.
    Brown DM; Fisher C; Donaldson K
    J Toxicol Environ Health A; 1998 Apr; 53(7):545-61. PubMed ID: 9561968
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidant generation promotes iron sequestration in BEAS-2B cells exposed to asbestos.
    Wang X; Wu Y; Stonehuerner JG; Dailey LA; Richards JD; Jaspers I; Piantadosi CA; Ghio AJ
    Am J Respir Cell Mol Biol; 2006 Mar; 34(3):286-92. PubMed ID: 16272461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.