BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20718667)

  • 1. Transstadial transmission of Pythium in Bradysia impatiens and lack of adult vectoring capacity.
    Braun SE; Castrillo LA; Sanderson JP; Daughtrey ML; Wraight SP
    Phytopathology; 2010 Dec; 100(12):1307-14. PubMed ID: 20718667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larval Bradysia impatiens (Diptera: Sciaridae) potential for vectoring Pythium root rot pathogens.
    Braun SE; Sanderson JP; Wraight SP
    Phytopathology; 2012 Mar; 102(3):283-9. PubMed ID: 22085299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungus gnat feeding and mechanical wounding inhibit Pythium aphanidermatum infection of geranium seedlings.
    Braun SE; Sanderson JP; Nelson EB; Daughtrey ML; Wraight SP
    Phytopathology; 2009 Dec; 99(12):1421-8. PubMed ID: 19900009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems.
    Postma J; Bonants PJ; Van Os EA
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):47-59. PubMed ID: 12425020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests.
    Chavarriaga D; Bodles WJ; Leifert C; Belbahri L; Woodward S
    FEMS Microbiol Lett; 2007 Nov; 276(1):67-74. PubMed ID: 17937665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Quantification of Pathogenic Pythium spp. from Soils in Eastern Washington Using Real-Time Polymerase Chain Reaction.
    Schroeder KL; Okubara PA; Tambong JT; Lévesque CA; Paulitz TC
    Phytopathology; 2006 Jun; 96(6):637-47. PubMed ID: 18943182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Role of
    Budziszewska M; Frąckowiak P; Obrępalska-Stęplowska A
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207477
    [No Abstract]   [Full Text] [Related]  

  • 8. Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum.
    Timmusk S; van West P; Gow NA; Huffstutler RP
    J Appl Microbiol; 2009 May; 106(5):1473-81. PubMed ID: 19226403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes.
    El-Tarabily KA; Nassar AH; Hardy GE; Sivasithamparam K
    J Appl Microbiol; 2009 Jan; 106(1):13-26. PubMed ID: 19120624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability of Oomycete Propagules Following Ingestion and Excretion by Fungus Gnats, Shore Flies, and Snails.
    Hyder N; Coffey MD; Stanghellini ME
    Plant Dis; 2009 Jul; 93(7):720-726. PubMed ID: 30764365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonism of Pythium blight of zucchini by Hypocrea jecorina does not require cellulase gene expression but is improved by carbon catabolite derepression.
    Seidl V; Schmoll M; Scherm B; Balmas V; Seiboth B; Migheli Q; Kubicek CP
    FEMS Microbiol Lett; 2006 Apr; 257(1):145-51. PubMed ID: 16553845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Pythium Species Associated With Greenhouse Floriculture Crops in Michigan.
    Del Castillo Múnera J; Hausbeck MK
    Plant Dis; 2016 Mar; 100(3):569-576. PubMed ID: 30688597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pythium vexans causing patch canker of rubber trees on Hainan Island, China.
    Zeng HC; Ho HH; Zheng FC
    Mycopathologia; 2005 Jun; 159(4):601-6. PubMed ID: 15983748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis and molecular mapping of quantitative trait loci in common bean against Pythium ultimum.
    Campa A; Pérez-Vega E; Pascual A; Ferreira JJ
    Phytopathology; 2010 Dec; 100(12):1315-20. PubMed ID: 21062171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pythium solare sp. nov., a new pathogen of green beans in Spain.
    de Cock AW; Lévesque CA; Melero-Vara JM; Serrano Y; Guirado ML; Gómez J
    Mycol Res; 2008 Sep; 112(Pt 9):1115-21. PubMed ID: 18703326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily changes of infections by Pythium ultimum after a nutrient impulse in organic versus conventional soils.
    He M; Ma W; Tian G; Blok W; Khodzaeva A; Zelenev VV; Semenov AM; van Bruggen AH
    Phytopathology; 2010 Jun; 100(6):593-600. PubMed ID: 20465415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits.
    Folman LB; Postma J; van Veen JA
    Microb Ecol; 2003 Jan; 45(1):72-87. PubMed ID: 12469246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Major Ancestors of North American Soybean Cultivars for Resistance to Three Pythium Species that Cause Seedling Blight.
    Rod KS; Walker DR; Bradley CA
    Plant Dis; 2018 Nov; 102(11):2241-2252. PubMed ID: 30222055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.
    Ahonsi MO; Ling Y; Kageyama K
    J Microbiol Methods; 2010 Nov; 83(2):260-5. PubMed ID: 20826191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection.
    Rezzonico F; Binder C; Défago G; Moënne-Loccoz Y
    Mol Plant Microbe Interact; 2005 Sep; 18(9):991-1001. PubMed ID: 16167769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.