These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20719059)

  • 1. Detection of cotton lint trash within the ultraviolet-visible spectral range.
    Zhou F; Ding T
    Appl Spectrosc; 2010 Aug; 64(8):936-41. PubMed ID: 20719059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of cotton (Gossypium hirsutum) lint trash by fluorescence spectroscopy.
    Gamble GR; Foulk JA
    J Agric Food Chem; 2007 Jun; 55(13):4940-3. PubMed ID: 17536818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Metamerism breakdown characteristic and its application in detection of foreign materials].
    Jia DY; Yang WK; Liu Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2596-600. PubMed ID: 19271498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botanical trash present in cotton before and after saw-type lint cleaning.
    Morey PR; Bethea RM; Wakelyn PJ; Kirk IW; Kopetzky MT
    Am Ind Hyg Assoc J; 1976 Jun; 37(6):321-8. PubMed ID: 937170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and use of an attenuated total reflectance/fourier transform infrared (ATR/FT-IR) spectral database to identify foreign matter in cotton.
    Himmelsbach DS; Hellgeth JW; McAlister DD
    J Agric Food Chem; 2006 Oct; 54(20):7405-12. PubMed ID: 17002401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue and UV LED-induced fluorescence in cotton foreign matter.
    Mustafic A; Li C; Haidekker M
    J Biol Eng; 2014; 8():29. PubMed ID: 25926886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash.
    Pelletier MG
    Sensors (Basel); 2008 Feb; 8(2):817-829. PubMed ID: 27879736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and discrimination of cotton foreign matter using push-broom based hyperspectral imaging: system design and capability.
    Jiang Y; Li C
    PLoS One; 2015; 10(3):e0121969. PubMed ID: 25793990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research on the trash content measurement and classification of ginned cotton by using NIR spectroscopy technique].
    Guo JX; Rao XQ; Cheng F; Ying YB; Kang YG; Li FT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):649-53. PubMed ID: 20496679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.
    Loudermilk JB; Himmelsbach DS; Barton FE; de Haseth JA
    Appl Spectrosc; 2008 Jun; 62(6):661-70. PubMed ID: 18559154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a fluorescent dust tracer technique in cotton ginning.
    Bethea RM; Rowlett CD; Morey PR
    Am Ind Hyg Assoc J; 1978 Dec; 39(12):998-1008. PubMed ID: 742602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications.
    Lenk S; Chaerle L; Pfündel EE; Langsdorf G; Hagenbeek D; Lichtenthaler HK; Van Der Straeten D; Buschmann C
    J Exp Bot; 2007; 58(4):807-14. PubMed ID: 17118970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].
    Wang ST; Wang ZF; Liu MH; Wei M; Chen DY; Wang XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):287-91. PubMed ID: 27228784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Objective-type dark-field system applied to multi-wavelength capillary electrophoresis for fluorescent detection and analysis.
    Lin SW; Hsu JH; Chang CH; Lin CH
    Biosens Bioelectron; 2009 Oct; 25(2):450-5. PubMed ID: 19720517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy.
    Subhash N; Thomas SS; Mallia RJ; Jose M
    Lasers Surg Med; 2005 Oct; 37(4):320-8. PubMed ID: 16180220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of 6-mercaptopurine based on the fluorescence enhancement of Au nanoparticles.
    Shen XC; Jiang LF; Liang H; Lu X; Zhang LJ; Liu XY
    Talanta; 2006 Apr; 69(2):456-62. PubMed ID: 18970589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of excitation light wavelength on the fluorescence spectra of ethanol solutions].
    Liu Y; Lan XF; Shen ZH; Lu J; Ni XW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):242-5. PubMed ID: 15852866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.