These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20719681)

  • 1. Force-dependent changes in movement-related cortical potentials.
    Oda S; Shibata M; Moritani T
    J Electromyogr Kinesiol; 1996 Dec; 6(4):247-52. PubMed ID: 20719681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships between movement-related cortical potentials and motor unit activity during muscle contraction.
    Shibata M; Oda S; Moritani T
    J Electromyogr Kinesiol; 1997 Jun; 7(2):79-85. PubMed ID: 20719693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of preceding muscle activity on movement-related cortical potential during superimposed ballistic contraction.
    Miyamoto T; Kizuka T; Ono S
    Neurosci Lett; 2020 Sep; 735():135193. PubMed ID: 32565221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical potentials associated with voluntary mandibular movements.
    Yoshida K; Kaji R; Hamano T; Kohara N; Kimura J; Shibasaki H; Iizuka T
    J Dent Res; 2000 Jul; 79(7):1514-8. PubMed ID: 11005737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement-related cortical potentials during handgrip contractions with special reference to force and electromyogram bilateral deficit.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1995; 72(1-2):1-5. PubMed ID: 8789562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing movement-related cortical potential between real and simulated movement tasks from an ecological validity perspective.
    Ogahara K; Nakashima A; Suzuki T; Sugawara K; Yoshida N; Hatta A; Moriuchi T; Higashi T
    Front Hum Neurosci; 2023; 17():1313835. PubMed ID: 38298203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between motor activity-related cortical potential and voluntary muscle activation.
    Siemionow V; Yue GH; Ranganathan VK; Liu JZ; Sahgal V
    Exp Brain Res; 2000 Aug; 133(3):303-11. PubMed ID: 10958520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal movement related potentials in patients with lesions of basal ganglia and anterior thalamus.
    Fève A; Bathien N; Rondot P
    J Neurol Neurosurg Psychiatry; 1994 Jan; 57(1):100-4. PubMed ID: 8301287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions.
    Berchicci M; Menotti F; Macaluso A; Di Russo F
    Front Hum Neurosci; 2013; 7():135. PubMed ID: 23596408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement-related cortical potentials associated with progressive muscle fatigue in a grasping task.
    Johnston J; Rearick M; Slobounov S
    Clin Neurophysiol; 2001 Jan; 112(1):68-77. PubMed ID: 11137663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the modulation of brain activity associated with handgrip force and fatigue.
    Cao L; Hao D; Rong Y; Zhou Y; Li M; Tian Y
    Technol Health Care; 2015; 23 Suppl 2():S427-33. PubMed ID: 26410509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of practice on brain activity: an investigation in top-level rifle shooters.
    Di Russo F; Pitzalis S; Aprile T; Spinelli D
    Med Sci Sports Exerc; 2005 Sep; 37(9):1586-93. PubMed ID: 16177612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Age-related changes in movement-related cortical potentials].
    Ishizuka H; Tomi H; Sunohara N
    Nihon Ronen Igakkai Zasshi; 1996 Aug; 33(8):586-91. PubMed ID: 8921696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles.
    Todd G; Petersen NT; Taylor JL; Gandevia SC
    Exp Brain Res; 2003 Jun; 150(3):308-13. PubMed ID: 12677313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement related potentials and oscillatory activities in the human internal globus pallidus during voluntary movements.
    Tsang EW; Hamani C; Moro E; Mazzella F; Lozano AM; Hodaie M; Yeh IJ; Chen R
    J Neurol Neurosurg Psychiatry; 2012 Jan; 83(1):91-7. PubMed ID: 21700729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term motor practice induces practice-dependent modulation of movement-related cortical potentials (MRCP) preceding a self-paced non-dominant handgrip movement in kendo players.
    Hatta A; Nishihira Y; Higashiura T; Kim SR; Kaneda T
    Neurosci Lett; 2009 Aug; 459(3):105-8. PubMed ID: 19427364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The shape of the force-elbow angle relationship for maximal voluntary contractions and sub-maximal electrically induced contractions in human elbow flexors.
    Hansen EA; Lee HD; Barrett K; Herzog W
    J Biomech; 2003 Nov; 36(11):1713-8. PubMed ID: 14522213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical potentials preceding voluntary elbow movement in recovered hemiparesis.
    Kitamura J; Shibasaki H; Takeuchi T
    Electroencephalogr Clin Neurophysiol; 1996 Feb; 98(2):149-56. PubMed ID: 8598175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man.
    Barrett G; Shibasaki H; Neshige R
    Electroencephalogr Clin Neurophysiol; 1986 Apr; 63(4):327-39. PubMed ID: 2419090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    Brain Res; 2004 Oct; 1023(2):200-12. PubMed ID: 15374746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.