These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20719744)

  • 41. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SoMART: a web server for plant miRNA, tasiRNA and target gene analysis.
    Li F; Orban R; Baker B
    Plant J; 2012 Jun; 70(5):891-901. PubMed ID: 22268718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins.
    Merchan F; Boualem A; Crespi M; Frugier F
    Genome Biol; 2009; 10(12):R136. PubMed ID: 19951405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice.
    Lacombe S; Nagasaki H; Santi C; Duval D; PiƩgu B; Bangratz M; Breitler JC; Guiderdoni E; Brugidou C; Hirsch J; Cao X; Brice C; Panaud O; Karlowski WM; Sato Y; Echeverria M
    BMC Plant Biol; 2008 Dec; 8():123. PubMed ID: 19055717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and characterization of microRNAs from rice.
    Sunkar R; Girke T; Jain PK; Zhu JK
    Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the highly accumulated microRNA*s in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa).
    Shao C; Ma X; Xu X; Meng Y
    Gene; 2013 Feb; 515(1):123-7. PubMed ID: 23201415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequence variation of MicroRNAs and their binding sites in Arabidopsis.
    Ehrenreich IM; Purugganan MD
    Plant Physiol; 2008 Apr; 146(4):1974-82. PubMed ID: 18305205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing.
    Song QX; Liu YF; Hu XY; Zhang WK; Ma B; Chen SY; Zhang JS
    BMC Plant Biol; 2011 Jan; 11():5. PubMed ID: 21219599
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants.
    Wu HJ; Wang ZM; Wang M; Wang XJ
    Plant Physiol; 2013 Apr; 161(4):1875-84. PubMed ID: 23429259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of key sequence features required for microRNA biogenesis in plants.
    Rojas AML; Drusin SI; Chorostecki U; Mateos JL; Moro B; Bologna NG; Bresso EG; Schapire A; Rasia RM; Moreno DM; Palatnik JF
    Nat Commun; 2020 Oct; 11(1):5320. PubMed ID: 33087730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).
    Kumar RR; Pathak H; Sharma SK; Kala YK; Nirjal MK; Singh GP; Goswami S; Rai RD
    Funct Integr Genomics; 2015 May; 15(3):323-48. PubMed ID: 25480755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana.
    Iida K; Jin H; Zhu JK
    BMC Genomics; 2009 Apr; 10():155. PubMed ID: 19358740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AtmiRNET: a web-based resource for reconstructing regulatory networks of Arabidopsis microRNAs.
    Chien CH; Chiang-Hsieh YF; Chen YA; Chow CN; Wu NY; Hou PF; Chang WC
    Database (Oxford); 2015; 2015():bav042. PubMed ID: 25972521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana.
    de Meaux J; Hu JY; Tartler U; Goebel U
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8994-9. PubMed ID: 18579782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors.
    Baldrich P; Campo S; Wu MT; Liu TT; Hsing YI; San Segundo B
    RNA Biol; 2015; 12(8):847-63. PubMed ID: 26083154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.).
    Colaiacovo M; Subacchi A; Bagnaresi P; Lamontanara A; Cattivelli L; Faccioli P
    BMC Genomics; 2010 Oct; 11():595. PubMed ID: 20969764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic analysis of rice microRNA promoters and clusters.
    Cui X; Xu SM; Mu DS; Yang ZM
    Gene; 2009 Feb; 431(1-2):61-6. PubMed ID: 19073239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-wide analysis of brassinosteroid responsive small RNAs in Arabidopsis thaliana.
    Park SY; Choi JH; Oh DH; Johnson JC; Dassanayake M; Jeong DH; Oh MH
    Genes Genomics; 2020 Aug; 42(8):957-969. PubMed ID: 32648234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioinformatics Study of Structural Patterns in Plant MicroRNA Precursors.
    Miskiewicz J; Tomczyk K; Mickiewicz A; Sarzynska J; Szachniuk M
    Biomed Res Int; 2017; 2017():6783010. PubMed ID: 28280737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.