These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20719744)

  • 61. Comparative analysis of microRNA promoters in Arabidopsis and rice.
    Zhao X; Li L
    Genomics Proteomics Bioinformatics; 2013 Feb; 11(1):56-60. PubMed ID: 23453017
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana.
    Ahmed F; Senthil-Kumar M; Lee S; Dai X; Mysore KS; Zhao PX
    RNA Biol; 2014; 11(11):1414-29. PubMed ID: 25629686
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Discrimination of the expression of paralogous microRNA precursors that share the same major mature form.
    Wang M; Wang W; Zhang P; Xiao J; Wang J; Huang C
    PLoS One; 2014; 9(3):e90591. PubMed ID: 24594692
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Computational prediction of rice (Oryza sativa) miRNA targets.
    Archak S; Nagaraju J
    Genomics Proteomics Bioinformatics; 2007 Dec; 5(3-4):196-206. PubMed ID: 18267301
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126.
    Harnprasopwat R; Ha D; Toyoshima T; Lodish H; Tojo A; Kotani A
    Biochem Biophys Res Commun; 2010 Aug; 399(2):117-22. PubMed ID: 20621067
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolution of Arabidopsis MIR genes generates novel microRNA classes.
    Vazquez F; Blevins T; Ailhas J; Boller T; Meins F
    Nucleic Acids Res; 2008 Nov; 36(20):6429-38. PubMed ID: 18842626
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization and expression profiles of miRNAs in rice seeds.
    Xue LJ; Zhang JJ; Xue HW
    Nucleic Acids Res; 2009 Feb; 37(3):916-30. PubMed ID: 19103661
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dual coding of siRNAs and miRNAs by plant transposable elements.
    Piriyapongsa J; Jordan IK
    RNA; 2008 May; 14(5):814-21. PubMed ID: 18367716
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends.
    German MA; Pillay M; Jeong DH; Hetawal A; Luo S; Janardhanan P; Kannan V; Rymarquis LA; Nobuta K; German R; De Paoli E; Lu C; Schroth G; Meyers BC; Green PJ
    Nat Biotechnol; 2008 Aug; 26(8):941-6. PubMed ID: 18542052
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Frequency and fate of microRNA editing in human brain.
    Kawahara Y; Megraw M; Kreider E; Iizasa H; Valente L; Hatzigeorgiou AG; Nishikura K
    Nucleic Acids Res; 2008 Sep; 36(16):5270-80. PubMed ID: 18684997
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches.
    Moro B; Rojas AML; Palatnik JF
    Methods Mol Biol; 2019; 1932():261-283. PubMed ID: 30701507
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Human miRNA precursors with box H/ACA snoRNA features.
    Scott MS; Avolio F; Ono M; Lamond AI; Barton GJ
    PLoS Comput Biol; 2009 Sep; 5(9):e1000507. PubMed ID: 19763159
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA.
    Nakano M; Nobuta K; Vemaraju K; Tej SS; Skogen JW; Meyers BC
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D731-5. PubMed ID: 16381968
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural basis of microRNA length variety.
    Starega-Roslan J; Krol J; Koscianska E; Kozlowski P; Szlachcic WJ; Sobczak K; Krzyzosiak WJ
    Nucleic Acids Res; 2011 Jan; 39(1):257-68. PubMed ID: 20739353
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dicer cleaves 5'-extended microRNA precursors originating from RNA polymerase II transcription start sites.
    Sheng P; Fields C; Aadland K; Wei T; Kolaczkowski O; Gu T; Kolaczkowski B; Xie M
    Nucleic Acids Res; 2018 Jun; 46(11):5737-5752. PubMed ID: 29746670
    [TBL] [Abstract][Full Text] [Related]  

  • 76. plantMirP: an efficient computational program for the prediction of plant pre-miRNA by incorporating knowledge-based energy features.
    Yao Y; Ma C; Deng H; Liu Q; Zhang J; Yi M
    Mol Biosyst; 2016 Oct; 12(10):3124-31. PubMed ID: 27472470
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ViralmiR: a support-vector-machine-based method for predicting viral microRNA precursors.
    Huang KY; Lee TY; Teng YC; Chang TH
    BMC Bioinformatics; 2015; 16 Suppl 1(Suppl 1):S9. PubMed ID: 25708359
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery.
    Li N; You X; Chen T; Mackowiak SD; Friedländer MR; Weigt M; Du H; Gogol-Döring A; Chang Z; Dieterich C; Hu Y; Chen W
    Nucleic Acids Res; 2013 Apr; 41(6):3619-34. PubMed ID: 23396444
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance.
    Campo S; Peris-Peris C; Siré C; Moreno AB; Donaire L; Zytnicki M; Notredame C; Llave C; San Segundo B
    New Phytol; 2013 Jul; 199(1):212-227. PubMed ID: 23627500
    [TBL] [Abstract][Full Text] [Related]  

  • 80. miRNEST 2.0: a database of plant and animal microRNAs.
    Szczesniak MW; Makalowska I
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D74-7. PubMed ID: 24243848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.