These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20719924)

  • 21. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity.
    Pereira AC; Rodríguez-Cattáneo A; Caputi AA
    J Physiol Paris; 2014; 108(2-3):71-83. PubMed ID: 25088503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia.
    Keller CH; Maler L; Heiligenberg W
    J Comp Neurol; 1990 Mar; 293(3):347-76. PubMed ID: 1691214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced sensory sampling precedes self-initiated locomotion in an electric fish.
    Jun JJ; Longtin A; Maler L
    J Exp Biol; 2014 Oct; 217(Pt 20):3615-28. PubMed ID: 25320268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrosensory systems in the mormyrid fish, Gnathonemus petersii : special emphasis on the fast conducting pathway.
    Szabo T; Enger PS; Libouban S
    J Physiol (Paris); 1979; 75(4):409-20. PubMed ID: 512973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.
    Gómez L; Budelli R; Grant K; Caputi AA
    J Exp Biol; 2004 Jun; 207(Pt 14):2443-53. PubMed ID: 15184516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish.
    Bell CC; Libouban S; Szabo T
    J Comp Neurol; 1983 May; 216(3):327-38. PubMed ID: 6306068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encoding and processing biologically relevant temporal information in electrosensory systems.
    Fortune ES; Rose GJ; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):625-35. PubMed ID: 16450118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric organ discharge and electrosensory reafference in skates.
    New JG
    Biol Bull; 1994 Aug; 187(1):64-75. PubMed ID: 7918797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From sparks to spikes: information processing in the electrosensory systems of fish.
    Sawtell NB; Williams A; Bell CC
    Curr Opin Neurobiol; 2005 Aug; 15(4):437-43. PubMed ID: 16009545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple model of the electrosensory electromotor loop in Gymnotus omarorum.
    Caputi AA; Waddell JC; Aguilera PA
    Biosystems; 2023 Jan; 223():104800. PubMed ID: 36343760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.
    Iribarne L; Castelló ME
    J Physiol Paris; 2014; 108(2-3):47-60. PubMed ID: 24844821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The active electrosensory range of Gymnotus omarorum.
    Pereira AC; Aguilera P; Caputi AA
    J Exp Biol; 2012 Sep; 215(Pt 18):3266-80. PubMed ID: 22915713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role of burst firings in encoding of spatiotemporally-varying stimulus.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Biosystems; 2004; 76(1-3):21-31. PubMed ID: 15351127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia.
    Keller CH; Heiligenberg W
    J Comp Physiol A; 1989 Feb; 164(5):565-76. PubMed ID: 2565397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish.
    Grant K; Bell CC; Clausse S; Ravaille M
    J Comp Neurol; 1986 Mar; 245(4):514-30. PubMed ID: 3700711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit.
    Sawtell NB
    Neuron; 2010 May; 66(4):573-84. PubMed ID: 20510861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs.
    Cilleruelo ER; Caputi AA
    Brain Res; 2012 Jan; 1434():102-14. PubMed ID: 21835395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus.
    Zhang Y; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):509-21. PubMed ID: 16450119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.