BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 20720014)

  • 1. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits.
    Irannejad R; Wedegaertner PB
    J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi.
    Klayman LM; Wedegaertner PB
    J Biol Chem; 2017 Feb; 292(5):1773-1784. PubMed ID: 27994056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipase C beta3 is a key component in the Gbetagamma/PKCeta/PKD-mediated regulation of trans-Golgi network to plasma membrane transport.
    Díaz Añel AM
    Biochem J; 2007 Aug; 406(1):157-65. PubMed ID: 17492941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway.
    Hewavitharana T; Wedegaertner PB
    Cell Signal; 2015 Dec; 27(12):2444-51. PubMed ID: 26327583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression.
    Rajanala K; Klayman LM; Wedegaertner PB
    Mol Biol Cell; 2021 Oct; 32(20):br2. PubMed ID: 34260268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.
    Jensen DD; Zhao P; Jimenez-Vargas NN; Lieu T; Gerges M; Yeatman HR; Canals M; Vanner SJ; Poole DP; Bunnett NW
    J Biol Chem; 2016 May; 291(21):11285-99. PubMed ID: 27030010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of PKD1-mediated Golgi to cell surface trafficking by Gαq subunits.
    Coria AS; Masseroni ML; Díaz Añel AM
    Biol Cell; 2014 Jan; 106(1):30-43. PubMed ID: 24175919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
    Senarath K; Payton JL; Kankanamge D; Siripurapu P; Tennakoon M; Karunarathne A
    J Biol Chem; 2018 Feb; 293(8):2974-2989. PubMed ID: 29317505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction.
    Akgoz M; Kalyanaraman V; Gautam N
    Cell Signal; 2006 Oct; 18(10):1758-68. PubMed ID: 16517125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets.
    Xu X; Wu G
    Trends Pharmacol Sci; 2023 Feb; 44(2):98-111. PubMed ID: 36494204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2.
    Zhao P; Pattison LA; Jensen DD; Jimenez-Vargas NN; Latorre R; Lieu T; Jaramillo JO; Lopez-Lopez C; Poole DP; Vanner SJ; Schmidt BL; Bunnett NW
    J Biol Chem; 2019 Jul; 294(27):10649-10662. PubMed ID: 31142616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G protein βγ subunits directly interact with and activate phospholipase Cϵ.
    Madukwe JC; Garland-Kuntz EE; Lyon AM; Smrcka AV
    J Biol Chem; 2018 Apr; 293(17):6387-6397. PubMed ID: 29535186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers.
    Khater M; Wei Z; Xu X; Huang W; Lokeshwar BL; Lambert NA; Wu G
    J Biol Chem; 2021; 296():100325. PubMed ID: 33493514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8.
    Yuan C; Sato M; Lanier SM; Smrcka AV
    J Biol Chem; 2007 Jul; 282(27):19938-47. PubMed ID: 17446173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus.
    Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y
    Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways.
    Mahon MJ; Bonacci TM; Divieti P; Smrcka AV
    Mol Endocrinol; 2006 Jan; 20(1):136-46. PubMed ID: 16099817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKCeta is required for beta1gamma2/beta3gamma2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus.
    Díaz Añel AM; Malhotra V
    J Cell Biol; 2005 Apr; 169(1):83-91. PubMed ID: 15824133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G protein βγ subunits regulate cardiomyocyte hypertrophy through a perinuclear Golgi phosphatidylinositol 4-phosphate hydrolysis pathway.
    Malik S; deRubio RG; Trembley M; Irannejad R; Wedegaertner PB; Smrcka AV
    Mol Biol Cell; 2015 Mar; 26(6):1188-98. PubMed ID: 25609085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation.
    Saini DK; Karunarathne WK; Angaswamy N; Saini D; Cho JH; Kalyanaraman V; Gautam N
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11417-22. PubMed ID: 20534534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.