These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 20720302)
1. Mapping of sequence-specific markers and loci controlling preharvest sprouting and alpha-amylase activity in rye (Secale cereale L.) on the genetic map of an F2 (S120×S76) population. Myskow B; Stojalowski S; Milczarski P; Masojc P J Appl Genet; 2010; 51(3):283-7. PubMed ID: 20720302 [TBL] [Abstract][Full Text] [Related]
2. Genomic architecture of alpha-amylase activity in mature rye grain relative to that of preharvest sprouting. Masojć P; Wiśniewska M; Łań A; Milczarski P; Berdzik M; Pędziwiatr D; Pol-Szyszko M; Gałęza M; Owsianicki R J Appl Genet; 2011 May; 52(2):153-60. PubMed ID: 21225388 [TBL] [Abstract][Full Text] [Related]
3. QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). Masojć P; Banek-Tabor A; Milczarski P; Twardowska M J Appl Genet; 2007; 48(3):211-7. PubMed ID: 17666773 [TBL] [Abstract][Full Text] [Related]
4. New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 x RXL10 intercross. Milczarski P; Banek-Tabor A; Lebiecka K; Stojałowski S; Myśków B; Masojć P J Appl Genet; 2007; 48(1):11-24. PubMed ID: 17272857 [TBL] [Abstract][Full Text] [Related]
5. Detection of the quantitative trait loci for α-amylase activity on a high-density genetic map of rye and comparison of their localization to loci controlling preharvest sprouting and earliness. Myśków B; Stojałowski S; Lań A; Bolibok-Brągoszewska H; Rakoczy-Trojanowska M; Kilian A Mol Breed; 2012 Jun; 30(1):367-376. PubMed ID: 22707913 [TBL] [Abstract][Full Text] [Related]
6. A consensus map of chromosome 6R in rye (Secale cereale L.). Stojałowski S; Myśków B; Milczarski P; Masojć P Cell Mol Biol Lett; 2009; 14(2):190-8. PubMed ID: 18979069 [TBL] [Abstract][Full Text] [Related]
7. QTL mapping for benzoxazinoid content, preharvest sprouting, α-amylase activity, and leaf rust resistance in rye (Secale cereale L.). Milczarski P; Masojć P; Krajewski P; Stochmal A; Kowalczyk M; Angelov M; Ivanova V; Schollenberger M; Wakuliński W; Banaszak Z; Banaszak K; Rakoczy-Trojanowska M PLoS One; 2017; 12(12):e0189912. PubMed ID: 29267335 [TBL] [Abstract][Full Text] [Related]
8. The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Bolibok H; Gruszczyńska A; Hromada-Judycka A; Rakoczy-Trojanowska M Cell Mol Biol Lett; 2007; 12(4):523-35. PubMed ID: 17579815 [TBL] [Abstract][Full Text] [Related]
9. A doubled haploid rye linkage map with a QTL affecting α-amylase activity. Tenhola-Roininen T; Kalendar R; Schulman AH; Tanhuanpää P J Appl Genet; 2011 Aug; 52(3):299-304. PubMed ID: 21286900 [TBL] [Abstract][Full Text] [Related]
10. Bidirectional selective genotyping approach for the identification of quantitative trait loci controlling earliness per se in winter rye (Secale cereale L.). Myśków B; Stojałowski S J Appl Genet; 2016 Feb; 57(1):45-50. PubMed ID: 26069166 [TBL] [Abstract][Full Text] [Related]
11. Putative candidate genes responsible for leaf rolling in rye (Secale cereale L.). Myśków B; Góralska M; Lenarczyk N; Czyczyło-Mysza I; Stojałowski S BMC Genet; 2018 Aug; 19(1):57. PubMed ID: 30092756 [TBL] [Abstract][Full Text] [Related]
13. A high density consensus map of rye (Secale cereale L.) based on DArT markers. Milczarski P; Bolibok-Brągoszewska H; Myśków B; Stojałowski S; Heller-Uszyńska K; Góralska M; Brągoszewski P; Uszyński G; Kilian A; Rakoczy-Trojanowska M PLoS One; 2011; 6(12):e28495. PubMed ID: 22163026 [TBL] [Abstract][Full Text] [Related]
14. The mapping of QTLS for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye. Milczarski P; Masojć P Cell Mol Biol Lett; 2002; 7(2A):449-55. PubMed ID: 12378249 [TBL] [Abstract][Full Text] [Related]
15. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Liu S; Bai G Theor Appl Genet; 2010 Nov; 121(8):1395-404. PubMed ID: 20607209 [TBL] [Abstract][Full Text] [Related]
16. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Ogbonnaya FC; Imtiaz M; Ye G; Hearnden PR; Hernandez E; Eastwood RF; van Ginkel M; Shorter SC; Winchester JM Theor Appl Genet; 2008 May; 116(7):891-902. PubMed ID: 18368385 [TBL] [Abstract][Full Text] [Related]
17. The GAMYB gene in rye: sequence, polymorphisms, map location, allele-specific markers, and relationship with α-amylase activity. Bienias A; Góralska M; Masojć P; Milczarski P; Myśków B BMC Genomics; 2020 Aug; 21(1):578. PubMed ID: 32831010 [TBL] [Abstract][Full Text] [Related]
18. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Khlestkina EK; Than MH; Pestsova EG; Röder MS; Malyshev SV; Korzun V; Börner A Theor Appl Genet; 2004 Aug; 109(4):725-32. PubMed ID: 15300380 [TBL] [Abstract][Full Text] [Related]
19. Construction of genetic linkage map with chromosomal assigment and quantitative trait loci associated with some important agronomic traits in cotton. Adawy SS; Diab AA; Atia MA; Hussein EH GM Crops Food; 2013; 4(1):36-49. PubMed ID: 23333856 [TBL] [Abstract][Full Text] [Related]
20. Construction of a high-density genetic map and mapping of a spike length locus for rye. Che Y; Yang Y; Yang Y; Wei L; Guo J; Yang X; Li X; Liu W; Li L PLoS One; 2023; 18(10):e0293604. PubMed ID: 37903124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]