These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20720898)

  • 1. Ultraviolet angular response of cesium-telluride photocathodes.
    Johnson SM
    Appl Opt; 1992 May; 31(13):2332-42. PubMed ID: 20720898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical absorption and photoemission in semitransparent and opaque Cs(3)Sb photocathodes.
    Johnson SM
    Appl Opt; 1993 May; 32(13):2262-5. PubMed ID: 20820377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical factors in the photoemission of thin films.
    Ramberg EG
    Appl Opt; 1967 Dec; 6(12):2163-70. PubMed ID: 20062380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties and quantum efficiency of thin-film alkali halides in the far ultraviolet.
    Larruquert JI; Méndez JA; Aznárez JA; Tremsin AS; Siegmund OH
    Appl Opt; 2002 May; 41(13):2532-40. PubMed ID: 12013028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical means for enhancing the sensitivity of a tri-alkali photocathode.
    Novice MA; Vine J
    Appl Opt; 1967 Jul; 6(7):1171-8. PubMed ID: 20062157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-enhancement of photoemission from cesium telluride.
    Coleman CI
    Appl Opt; 1978 Jun; 17(11):1789-96. PubMed ID: 20198070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External field enhanced photoemission in silver-cesium-oxygen photocathodes.
    Burroughs EG
    Appl Opt; 1969 Feb; 8(2):261-6. PubMed ID: 20072211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes.
    Siegmund OH; Gaines GA
    Appl Opt; 1990 Nov; 29(31):4677-85. PubMed ID: 20577451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference-enhanced photoemission.
    Love JA; Sizelove JR
    Appl Opt; 1968 Jan; 7(1):11-5. PubMed ID: 20062395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ion beam surface treatment on the emission performance of photocathodes.
    Liu Y; Li F; Tian H; Wang G; Wang X
    Nanoscale Adv; 2022 Aug; 4(17):3517-3523. PubMed ID: 36134348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T,R(m)) technique.
    Hjortsberg A
    Appl Opt; 1981 Apr; 20(7):1254-63. PubMed ID: 20309294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer.
    Jin M; Chen X; Hao G; Chang B; Cheng H
    Appl Opt; 2015 Oct; 54(28):8332-8. PubMed ID: 26479605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant enhancement of the optical second harmonic generation in a poled azopolymer thin grating.
    Lagugné-Labarthet F; Adamietz F; Rodriguez V; Sourisseau C
    J Phys Chem B; 2006 Jul; 110(28):13689-93. PubMed ID: 16836311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Characterization of Multi-Alkali Antimonide Photocathodes for High-Brightness RF Photoinjectors.
    Mohanty SK; Krasilnikov M; Oppelt A; Stephan F; Sertore D; Monaco L; Pagani C; Hillert W
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoemission performance of thin graded structure AlGaN photocathode.
    Hao G; Shi F; Cheng H; Ren B; Chang B
    Appl Opt; 2015 Apr; 54(10):2572-6. PubMed ID: 25967161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a multiple reflective translucent photocathode.
    Sizelove JR; Love JA
    Appl Opt; 1967 Mar; 6(3):443-6. PubMed ID: 20057776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of MgF(2) and LiF Photocathodes in the Extreme Ultraviolet.
    Lapson LB; Timothy JG
    Appl Opt; 1973 Feb; 12(2):388-93. PubMed ID: 20125295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mie-type GaAs nanopillar array resonators for negative electron affinity photocathodes.
    Peng X; Poelker M; Stutzman M; Tang B; Zhang S; Zou J
    Opt Express; 2020 Jan; 28(2):860-874. PubMed ID: 32121807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.
    Bolakis C; Grbovic D; Lavrik NV; Karunasiri G
    Opt Express; 2010 Jul; 18(14):14488-95. PubMed ID: 20639934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.