These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 20720924)

  • 21. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing.
    Akondi V; Vohnsen B
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors.
    Robert C; Conan JM; Gratadour D; Schreiber L; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A201-15. PubMed ID: 21045881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Random generation of the turbulence slopes of a Shack-Hartmann wavefront sensor.
    Conan R
    Opt Lett; 2014 Mar; 39(6):1390-3. PubMed ID: 24690795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye.
    Leroux C; Dainty C
    Opt Express; 2010 Jan; 18(2):1197-206. PubMed ID: 20173943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements.
    Kim JJ; Fernandez B; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus.
    Li C; Li B; Zhang S
    Appl Opt; 2014 Feb; 53(4):618-24. PubMed ID: 24514178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving centroiding by super-resolution reconstruction of sodium layer density in Shack-Hartmann wavefront sensors.
    Mello AJ; Pipa DR
    Appl Opt; 2016 May; 55(14):3701-10. PubMed ID: 27168279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconfigurable Shack-Hartmann sensor without moving elements.
    Martínez-Cuenca R; Durán V; Climent V; Tajahuerce E; Bará S; Ares J; Arines J; Martínez-Corral M; Lancis J
    Opt Lett; 2010 May; 35(9):1338-40. PubMed ID: 20436561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor.
    Zhao L; Bai N; Li X; Ong LS; Fang ZP; Asundi AK
    Appl Opt; 2006 Jan; 45(1):90-4. PubMed ID: 16422324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection and characterization of an optical vortex by the branch point potential method: analytical and simulation results.
    Mobashery A; Hajimahmoodzadeh M; Fallah HR
    Appl Opt; 2015 May; 54(15):4732-9. PubMed ID: 26192508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reference-free Shack-Hartmann wavefront sensor.
    Zhao L; Guo W; Li X; Chen IM
    Opt Lett; 2011 Aug; 36(15):2752-4. PubMed ID: 21808301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Method Used to Improve the Dynamic Range of Shack-Hartmann Wavefront Sensor in Presence of Large Aberration.
    Yang W; Wang J; Wang B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors.
    DuBose TB; Gardner DF; Watnik AT
    Opt Lett; 2020 Apr; 45(7):1699-1702. PubMed ID: 32235977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tolerance analysis method for Shack-Hartmann sensors using a variable phase surface.
    Curatu C; Curatu G; Rolland J
    Opt Express; 2006 Jan; 14(1):138-47. PubMed ID: 19503325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modal integration of Hartmann and Shack-Hartmann patterns.
    Hernández-Gómez G; Malacara-Hernández Z; Malacara-Doblado D; Díaz-Uribe R; Malacara-Hernández D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):846-51. PubMed ID: 24695148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror.
    Starikov FA; Kochemasov GG; Koltygin MO; Kulikov SM; Manachinsky AN; Maslov NV; Sukharev SA; Aksenov VP; Izmailov IV; Kanev FY; Atuchin VV; Soldatenkov IS
    Opt Lett; 2009 Aug; 34(15):2264-6. PubMed ID: 19649065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modal processing of Hartmann and Shack-Hartmann patterns by means of a least squares fitting of the transverse aberrations.
    Hernández-Gómez G; Malacara-Doblado D; Malacara-Hernández Z; Malacara-Hernández D
    Appl Opt; 2014 Nov; 53(31):7422-34. PubMed ID: 25402908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor.
    Beverage JL; Shack RV; Descour MR
    J Microsc; 2002 Jan; 205(Pt 1):61-75. PubMed ID: 11856382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Holographic imaging with a Shack-Hartmann wavefront sensor.
    Gong H; Soloviev O; Wilding D; Pozzi P; Verhaegen M; Vdovin G
    Opt Express; 2016 Jun; 24(13):13729-37. PubMed ID: 27410536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.