These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20720953)

  • 1. Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery.
    Felton M; Gurton KP; Pezzaniti JL; Chenault DB; Roth LE
    Opt Express; 2010 Jul; 18(15):15704-13. PubMed ID: 20720953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging.
    Gurton KP; Felton M
    Opt Express; 2012 Sep; 20(20):22344-59. PubMed ID: 23037383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of thermal equilibrium and contrast in LWIR polarimetric images.
    Tyo JS; Ratliff BM; Boger JK; Black WT; Bowers DL; Fetrow MP
    Opt Express; 2007 Nov; 15(23):15161-7. PubMed ID: 19550799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced facial recognition for thermal imagery using polarimetric imaging.
    Gurton KP; Yuffa AJ; Videen GW
    Opt Lett; 2014 Jul; 39(13):3857-9. PubMed ID: 24978755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achromatic phase retarder applied to MWIR & LWIR dual-band.
    Kang G; Tan Q; Wang X; Jin G
    Opt Express; 2010 Jan; 18(2):1695-703. PubMed ID: 20173997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.
    Kim BH; Kim MY; Chae YS
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29280970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing analysis of multispectral and polarimetric imaging for mid-infrared detection blindness condition.
    Zhao H; Li Y; Jia G; Li N; Ji Z; Gu J
    Appl Opt; 2018 Aug; 57(24):6840-6850. PubMed ID: 30129568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional polarimetric integral imaging in photon-starved conditions: performance comparison between visible and long wave infrared imaging.
    Usmani K; O'Connor T; Shen X; Marasco P; Carnicer A; Dey D; Javidi B
    Opt Express; 2020 Jun; 28(13):19281-19294. PubMed ID: 32672208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices.
    Huang EK; Hoang MA; Chen G; Ramezani-Darvish S; Haddadi A; Razeghi M
    Opt Lett; 2012 Nov; 37(22):4744-6. PubMed ID: 23164899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-band infrared remote sensing system with combined long-wave infrared imaging and mid-wave infrared spectral analysis.
    Fang Z; Yi X; Liu X; Zhang W; Zhang T
    Rev Sci Instrum; 2013 Aug; 84(8):083106. PubMed ID: 24007052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-wave and long-wave infrared dual-band stacked metamaterial absorber for broadband with high refractive index sensitivity.
    Hou E; Meng D; Liang Z; Xiong Y; Yang F; Tang Y; Fan Y; Qin Z; Shi X; Zhang Y; Liang J; Chen C; Lai J
    Appl Opt; 2020 Mar; 59(9):2695-2700. PubMed ID: 32225817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of Mid-Wave Infrared and Long-Wave Infrared Reflectance Spectra for Quantitative Analysis of Minerals.
    Desta F; Buxton M; Jansen J
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32156030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-band metamaterial absorber with a low-coherence composite cross structure in mid-wave and long-wave infrared bands.
    Hou E; Qin Z; Liang Z; Meng D; Shi X; Yang F; Liu W; Liu H; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Oct; 29(22):36145-36154. PubMed ID: 34809033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Long-Wave and Mid-Wave Infrared Imaging Modalities for Photothermal Coherence Tomography of Human Teeth.
    Thapa D; Welch R; Dabas RP; Salimi M; Tavakolian P; Sivagurunathan K; Ngai K; Huang B; Finer Y; Abrams S; Mandelis A; Tabatabaei N
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2755-2766. PubMed ID: 35196221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery.
    Wilson JP; Schuetz CA; Harrity CE; Kozacik S; Eng DL; Prather DW
    Opt Express; 2013 May; 21(10):12899-907. PubMed ID: 23736509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of infrared thermography for the dynamic measurement of skin temperature of moving athletes during competition; methodological issues.
    Aylwin PE; Racinais S; Bermon S; Lloyd A; Hodder S; Havenith G
    Physiol Meas; 2021 Aug; 42(8):. PubMed ID: 34320480
    [No Abstract]   [Full Text] [Related]  

  • 17. Improving cross-modal face recognition using polarimetric imaging.
    Short N; Hu S; Gurram P; Gurton K; Chan A
    Opt Lett; 2015 Mar; 40(6):882-5. PubMed ID: 25768137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-wave infrared transparent sulfur polymers enabled by symmetric thiol cross-linker.
    Lee M; Oh Y; Yu J; Jang SG; Yeo H; Park JJ; You NH
    Nat Commun; 2023 May; 14(1):2866. PubMed ID: 37208341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of quarter-wave retarders over finite spectral and angular bandwidths for infrared polarimetric-imaging applications.
    Wadsworth SL; Boreman GD
    Appl Opt; 2011 Dec; 50(36):6682-8. PubMed ID: 22193200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-wave and long-wave infrared signature model and measurement of power lines against atmospheric path radiance.
    Leslie P; Furxhi O; Short R; Grimming R; Lautzenheiser A; Longcor T; Driggers R
    Opt Express; 2022 Jan; 30(1):563-575. PubMed ID: 35201231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.