BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20720956)

  • 1. Detection of colored nanomaterials using evanescent field-based waveguide sensors.
    Fujimaki M; Nomura K; Sato K; Kato T; Gopinath SC; Wang X; Awazu K; Ohki Y
    Opt Express; 2010 Jul; 18(15):15732-40. PubMed ID: 20720956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips.
    Bearinger JP; Vörös J; Hubbell JA; Textor M
    Biotechnol Bioeng; 2003 May; 82(4):465-73. PubMed ID: 12632403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles.
    Alizadeh A; Khodaei MM; Karami Ch; Workentin MS; Shamsipur M; Sadeghi M
    Nanotechnology; 2010 Aug; 21(31):315503. PubMed ID: 20634571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The design of evanescent-field-coupled waveguide-mode sensors.
    Fujimaki M; Rockstuhl C; Wang X; Awazu K; Tominaga J; Fukuda N; Koganezawa Y; Ohki Y
    Nanotechnology; 2008 Mar; 19(9):095503. PubMed ID: 21817670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slab optical waveguide high-acidity sensor based on an absorbance change of protoporphyrin IX.
    Umemura T; Hotta H; Abe T; Takahashi Y; Takiguchi H; Uehara M; Odake T; Tsunoda K
    Anal Chem; 2006 Nov; 78(21):7511-6. PubMed ID: 17073420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picomolar selective detection of mercuric ion (Hg(2+)) using a functionalized single plasmonic gold nanoparticle.
    Song HD; Choi I; Yang YI; Hong S; Lee S; Kang T; Yi J
    Nanotechnology; 2010 Apr; 21(14):145501. PubMed ID: 20215658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring biological interactions using perforated evanescent-field-coupled waveguide-mode nanobiosensors.
    Gopinath SC; Awazu K; Fujimaki M; Tominaga J; Gupta KC; Kumar PK
    Nucleic Acids Symp Ser (Oxf); 2009; (53):93-4. PubMed ID: 19749276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle chemiresistor sensors: direct sensing of organics in aqueous electrolyte solution.
    Raguse B; Chow E; Barton CS; Wieczorek L
    Anal Chem; 2007 Oct; 79(19):7333-9. PubMed ID: 17722880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.
    Tran NHT; Kim J; Phan TB; Khym S; Ju H
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31478-31487. PubMed ID: 28849907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film.
    Hotta K; Yamaguchi A; Teramae N
    Anal Chem; 2010 Jul; 82(14):6066-73. PubMed ID: 20578726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection.
    Prabhakar A; Mukherji S
    Lab Chip; 2010 Mar; 10(6):748-54. PubMed ID: 20221563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of an integrated optical evanescent wave absorbance sensor for the determination of chlorinated hydrocarbons in water.
    Mayer J; Bürck J; Ache HJ
    Anal Bioanal Chem; 1996 Mar; 354(7-8):841-7. PubMed ID: 15048399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: label-free nanosensor for the analysis of RNA aptamer-ligand interactions.
    Gopinath SC; Awazu K; Fujimaki M; Sugimoto K; Ohki Y; Komatsubara T; Tominaga J; Gupta KC; Kumar PK
    Anal Chem; 2008 Sep; 80(17):6602-9. PubMed ID: 18672888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film.
    Yamaguchi A; Hotta K; Teramae N
    Anal Chem; 2009 Jan; 81(1):105-11. PubMed ID: 19049367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution.
    Huang CC; Chang HT
    Anal Chem; 2006 Dec; 78(24):8332-8. PubMed ID: 17165824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecular sensors utilizing waveguide modes excited by evanescent fields.
    Fujimaki M; Rockstuhl C; Wang X; Awazu K; Tominaga J; Ikeda T; Koganezawa Y; Ohki Y
    J Microsc; 2008 Feb; 229(Pt 2):320-6. PubMed ID: 18304092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new evanescent wave ammonia sensor based on polyaniline composite.
    Airoudj A; Debarnot D; Bêche B; Poncin-Epaillard F
    Talanta; 2008 Jul; 76(2):314-9. PubMed ID: 18585283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers.
    Wang X; Kim SS; Rossbach R; Jetter M; Michler P; Mizaikoff B
    Analyst; 2012 May; 137(10):2322-7. PubMed ID: 22249166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.