These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20720968)

  • 41. Mid-infrared photonic crystal cavities in silicon.
    Shankar R; Leijssen R; Bulu I; Lončar M
    Opt Express; 2011 Mar; 19(6):5579-86. PubMed ID: 21445197
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Q two-dimensional photonic crystal nanocavity on glass with an upper glass thin film.
    Kawata R; Fujita A; Pholsen N; Iwamoto S; Ota Y
    Opt Lett; 2024 May; 49(9):2345-2348. PubMed ID: 38691715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A 1.16-μm-radius disk cavity in a sunflower-type circular photonic crystal with ultrahigh quality factor.
    Zhang X; Sun X; Tang HX
    Opt Lett; 2012 Aug; 37(15):3195-7. PubMed ID: 22859130
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities.
    Zhang Y; McCutcheon MW; Burgess IB; Loncar M
    Opt Lett; 2009 Sep; 34(17):2694-6. PubMed ID: 19724535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cubic-wavelength mode volume photonic crystal nanobeam cavities in a monolithic CMOS platform.
    Al Qubaisi K; Schiller M; Zhang B; Onural D; Naughton MJ; Popović MA
    Opt Lett; 2023 Feb; 48(4):1024-1027. PubMed ID: 36791001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimization of photonic crystal nanocavities based on deep learning.
    Asano T; Noda S
    Opt Express; 2018 Dec; 26(25):32704-32717. PubMed ID: 30645432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Air-mode photonic crystal ring resonator on silicon-on-insulator.
    Gao G; Zhang Y; Zhang H; Wang Y; Huang Q; Xia J
    Sci Rep; 2016 Jan; 6():19999. PubMed ID: 26818430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Q/V air-mode photonic crystal cavities at microwave frequencies.
    Zhang Y; Bulu I; Tam WM; Levitt B; Shah J; Botto T; Loncar M
    Opt Express; 2011 May; 19(10):9371-7. PubMed ID: 21643193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity.
    Haret LD; Tanabe T; Kuramochi E; Notomi M
    Opt Express; 2009 Nov; 17(23):21108-17. PubMed ID: 19997350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers.
    Epp E; Ponnampalam N; Newman W; Drobot B; McMullin JN; Meldrum AF; DeCorby RG
    Opt Express; 2010 Nov; 18(24):24917-25. PubMed ID: 21164836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrahigh-Q nanocavities written with a nanoprobe.
    Yokoo A; Tanabe T; Kuramochi E; Notomi M
    Nano Lett; 2011 Sep; 11(9):3634-42. PubMed ID: 21806036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-index-mode photonic crystal nanobeam cavity for refractive index sensing at the 2  μm wavelength band.
    Dong P; Dai D; Shi Y
    Appl Opt; 2019 Apr; 58(12):3059-3063. PubMed ID: 31044778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved design and experimental demonstration of ultrahigh-Q C
    Takata K; Kuramochi E; Shinya A; Notomi M
    Opt Express; 2023 Mar; 31(7):11864-11884. PubMed ID: 37155812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward ultimate miniaturization of high Q silicon traveling-wave microresonators.
    Soltani M; Li Q; Yegnanarayanan S; Adibi A
    Opt Express; 2010 Sep; 18(19):19541-57. PubMed ID: 20940850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals.
    Lee MW; Grillet C; Tomljenovic-Hanic S; Mägi EC; Moss DJ; Eggleton BJ; Gai X; Madden S; Choi DY; Bulla DA; Luther-Davies B
    Opt Lett; 2009 Dec; 34(23):3671-3. PubMed ID: 19953157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-dimensional hybrid photonic/plasmonic crystal cavities.
    Liu TL; Russell KJ; Cui S; Hu EL
    Opt Express; 2014 Apr; 22(7):8219-25. PubMed ID: 24718197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of high-Q coupled nanobeam cavity for label-free sensing.
    Yaseen MT; Yang YC; Shih MH; Chang YC
    Sensors (Basel); 2015 Oct; 15(10):25868-81. PubMed ID: 26473870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Efficiency Coupling of Free Electrons to Sub-λ
    Bézard M; Si Hadj Mohand I; Ruggierio L; Le Roux A; Auad Y; Baroux P; Tizei LHG; Checoury X; Kociak M
    ACS Nano; 2024 Apr; 18(15):10417-10426. PubMed ID: 38557059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 1.2-µm-band ultrahigh-Q photonic crystal nanocavities and their potential for Raman silicon lasers.
    Okada H; Fujimoto M; Tanaka N; Saito Y; Asano T; Noda S; Takahashi Y
    Opt Express; 2021 Jul; 29(15):24396-24410. PubMed ID: 34614686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-loss surface-plasmonic nanobeam cavities.
    Kim MK; Lee SH; Choi M; Ahn BH; Park N; Lee YH; Min B
    Opt Express; 2010 May; 18(11):11089-96. PubMed ID: 20588966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.