These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 20721665)
1. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Ahemad M; Saghir Khan M Curr Microbiol; 2011 Feb; 62(2):532-8. PubMed ID: 20721665 [TBL] [Abstract][Full Text] [Related]
2. Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Ahemad M; Khan MS Arch Environ Contam Toxicol; 2010 Feb; 58(2):361-72. PubMed ID: 19756846 [TBL] [Abstract][Full Text] [Related]
3. Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Ahemad M; Khan MS Acta Microbiol Immunol Hung; 2011 Sep; 58(3):169-87. PubMed ID: 21983319 [TBL] [Abstract][Full Text] [Related]
4. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. Vyas P; Joshi R; Sharma KC; Rahi P; Gulati A; Gulati A J Microbiol Biotechnol; 2010 Dec; 20(12):1724-34. PubMed ID: 21193830 [TBL] [Abstract][Full Text] [Related]
5. Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Ahemad M; Khan MS Bull Environ Contam Toxicol; 2009 Jun; 82(6):761-6. PubMed ID: 19290455 [TBL] [Abstract][Full Text] [Related]
6. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonasputida isolated from mustard (Brassica compestris) rhizosphere. Ahemad M; Khan MS Chemosphere; 2012 Mar; 86(9):945-50. PubMed ID: 22133911 [TBL] [Abstract][Full Text] [Related]
7. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Jain R; Pandey A Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000 [TBL] [Abstract][Full Text] [Related]
8. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Chaiharn M; Lumyong S Curr Microbiol; 2011 Jan; 62(1):173-81. PubMed ID: 20552360 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of plant growth-promoting strain Pantoea NII-186. From Western Ghat forest soil, India. Dastager SG; Deepa CK; Puneet SC; Nautiyal CS; Pandey A Lett Appl Microbiol; 2009 Jul; 49(1):20-5. PubMed ID: 19413772 [TBL] [Abstract][Full Text] [Related]
10. Identification and functional characteristics of chlorpyrifos-degrading and plant growth promoting bacterium Acinetobacter calcoaceticus. Zhao L; Wang F; Zhao J J Basic Microbiol; 2014 May; 54(5):457-63. PubMed ID: 23712768 [TBL] [Abstract][Full Text] [Related]
11. Streptomyces cameroonensis sp. nov., a Geldanamycin Producer That Promotes Theobroma cacao Growth. Boudjeko T; Tchinda RA; Zitouni M; Nana JA; Lerat S; Beaulieu C Microbes Environ; 2017 Mar; 32(1):24-31. PubMed ID: 28260703 [TBL] [Abstract][Full Text] [Related]
12. Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ahemad M; Khan MS Ecotoxicology; 2011 Jun; 20(4):661-9. PubMed ID: 21318390 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Tagele SB; Kim SW; Lee HG; Kim HS; Lee YS Microbiol Res; 2018 Sep; 214():8-18. PubMed ID: 30031484 [TBL] [Abstract][Full Text] [Related]
15. Relative effect of glyphosate on glyphosate-tolerant maize rhizobacterial communities is not altered by soil properties. Barriuso J; Mellado RP J Microbiol Biotechnol; 2012 Feb; 22(2):159-65. PubMed ID: 22370343 [TBL] [Abstract][Full Text] [Related]
16. Colonization of Paracoccus sp. QCT6 and Enhancement of Metribuzin Degradation in Maize Rhizosphere Soil. Huang X; Zhang H; Chen F; Song M Curr Microbiol; 2018 Feb; 75(2):156-162. PubMed ID: 28940107 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. Ma JP; Wang Z; Lu P; Wang HJ; Waseem Ali S; Li SP; Huang X FEMS Microbiol Lett; 2009 Jun; 296(2):203-9. PubMed ID: 19459953 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Sheng XF; He LY; Zhou L; Shen YY Can J Microbiol; 2009 May; 55(5):529-35. PubMed ID: 19483781 [TBL] [Abstract][Full Text] [Related]
19. Effect of the herbicide glyphosate on the culturable fraction of glyphosate-tolerant maize rhizobacterial communities using two different growth media. Barriuso J; Valverde JR; Mellado RP Microbes Environ; 2011; 26(4):332-8. PubMed ID: 21747214 [TBL] [Abstract][Full Text] [Related]
20. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil. Gupta P; Kumar V; Usmani Z; Rani R; Chandra A Chemosphere; 2018 Feb; 192():318-327. PubMed ID: 29117590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]