These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20721787)

  • 21. Comparing data mining methods on the VAERS database.
    Banks D; Woo EJ; Burwen DR; Perucci P; Braun MM; Ball R
    Pharmacoepidemiol Drug Saf; 2005 Sep; 14(9):601-9. PubMed ID: 15954077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal detection of methylphenidate by comparing a spontaneous reporting database with a claims database.
    Kim J; Kim M; Ha JH; Jang J; Hwang M; Lee BK; Chung MW; Yoo TM; Kim MJ
    Regul Toxicol Pharmacol; 2011 Nov; 61(2):154-60. PubMed ID: 21510997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential utility of data-mining algorithms for early detection of potentially fatal/disabling adverse drug reactions: a retrospective evaluation.
    Hauben M; Reich L
    J Clin Pharmacol; 2005 Apr; 45(4):378-84. PubMed ID: 15778418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal detection in FDA AERS database using Dirichlet process.
    Hu N; Huang L; Tiwari RC
    Stat Med; 2015 Aug; 34(19):2725-42. PubMed ID: 25924820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application of knowledge discovery in databases to post-marketing drug safety: example of the WHO database.
    Bate A; Lindquist M; Edwards IR
    Fundam Clin Pharmacol; 2008 Apr; 22(2):127-40. PubMed ID: 18248442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of adverse drug reaction signals using an electronic health records database: Comparison of the Laboratory Extreme Abnormality Ratio (CLEAR) algorithm.
    Yoon D; Park MY; Choi NK; Park BJ; Kim JH; Park RW
    Clin Pharmacol Ther; 2012 Mar; 91(3):467-74. PubMed ID: 22237257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data mining for signal detection of adverse event safety data.
    Chen HC; Tsong Y; Chen JJ
    J Biopharm Stat; 2013; 23(1):146-60. PubMed ID: 23331228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic investigation of time windows for adverse event data mining for recently approved drugs.
    Hochberg AM; Hauben M; Pearson RK; O'Hara DJ; Reisinger SJ
    J Clin Pharmacol; 2009 Jun; 49(6):626-33. PubMed ID: 19451402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decision support methods for the detection of adverse events in post-marketing data.
    Hauben M; Bate A
    Drug Discov Today; 2009 Apr; 14(7-8):343-57. PubMed ID: 19187799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of model choices for the Continual Reassessment Method in phase I cancer trials.
    Paoletti X; Kramar A
    Stat Med; 2009 Oct; 28(24):3012-28. PubMed ID: 19672839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of data mining in pharmacovigilance.
    Hauben M; Madigan D; Gerrits CM; Walsh L; Van Puijenbroek EP
    Expert Opin Drug Saf; 2005 Sep; 4(5):929-48. PubMed ID: 16111454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study.
    Ahmed I; Thiessard F; Miremont-Salamé G; Bégaud B; Tubert-Bitter P
    Clin Pharmacol Ther; 2010 Oct; 88(4):492-8. PubMed ID: 20811349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. False discovery rate estimation for frequentist pharmacovigilance signal detection methods.
    Ahmed I; Dalmasso C; Haramburu F; Thiessard F; Broët P; Tubert-Bitter P
    Biometrics; 2010 Mar; 66(1):301-9. PubMed ID: 19432790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signal detection in pharmacovigilance: empirical evaluation of data mining tools.
    Chan KA; Hauben M
    Pharmacoepidemiol Drug Saf; 2005 Sep; 14(9):597-9. PubMed ID: 16134080
    [No Abstract]   [Full Text] [Related]  

  • 36. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.
    Gustafsson MG; Wallman M; Wickenberg Bolin U; Göransson H; Fryknäs M; Andersson CR; Isaksson A
    Artif Intell Med; 2010 Jun; 49(2):93-104. PubMed ID: 20347582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A note on dichotomization of continuous response variable in the presence of contamination and model misspecification.
    Shentu Y; Xie M
    Stat Med; 2010 Sep; 29(21):2200-14. PubMed ID: 20812301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic healthcare databases for active drug safety surveillance: is there enough leverage?
    Coloma PM; Trifirò G; Schuemie MJ; Gini R; Herings R; Hippisley-Cox J; Mazzaglia G; Picelli G; Corrao G; Pedersen L; van der Lei J; Sturkenboom M;
    Pharmacoepidemiol Drug Saf; 2012 Jun; 21(6):611-21. PubMed ID: 22315152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian and maximum likelihood estimation of genetic maps.
    York TL; Durrett RT; Tanksley S; Nielsen R
    Genet Res; 2005 Apr; 85(2):159-68. PubMed ID: 16174334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early postmarketing drug safety surveillance: data mining points to consider.
    Hauben M
    Ann Pharmacother; 2004 Oct; 38(10):1625-30. PubMed ID: 15304626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.