BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20721943)

  • 1. A weighted osteon morphotype score outperforms regional osteon percent prevalence calculations for interpreting cortical bone adaptation.
    Skedros JG; Kiser CJ; Mendenhall SD
    Am J Phys Anthropol; 2011 Jan; 144(1):41-50. PubMed ID: 20721943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images.
    Skedros JG; Mendenhall SD; Kiser CJ; Winet H
    Bone; 2009 Mar; 44(3):392-403. PubMed ID: 19049911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of osteon morphotype scoring schemes for interpreting load history: evaluation in the chimpanzee femur.
    Skedros JG; Kiser CJ; Keenan KE; Thomas SC
    J Anat; 2011 May; 218(5):480-99. PubMed ID: 21323667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are distributions of secondary osteon variants useful for interpreting load history in mammalian bones?
    Skedros JG; Sorenson SM; Jenson NH
    Cells Tissues Organs; 2007; 185(4):285-307. PubMed ID: 17587802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude.
    Skedros JG; Keenan KE; Williams TJ; Kiser CJ
    J Struct Biol; 2013 Feb; 181(2):95-107. PubMed ID: 23123271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of osteon circularity for determining species and interpreting load history in primates and nonprimates.
    Keenan KE; Mears CS; Skedros JG
    Am J Phys Anthropol; 2017 Apr; 162(4):657-681. PubMed ID: 28121024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones.
    Skedros JG; Doutré MS
    J Anat; 2019 Jun; 234(6):748-763. PubMed ID: 30924933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus.
    Skedros JG; Hunt KJ; Bloebaum RD
    J Morphol; 2004 Mar; 259(3):281-307. PubMed ID: 14994328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteocyte lacuna population densities in sheep, elk and horse calcanei.
    Skedros JG
    Cells Tissues Organs; 2005; 181(1):23-37. PubMed ID: 16439816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone.
    Skedros JG; Hunt KJ; Hughes PE; Winet H
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):609-29. PubMed ID: 12808646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei.
    Skedros JG; Su SC; Bloebaum RD
    Anat Rec; 1997 Nov; 249(3):297-316. PubMed ID: 9372164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution of osteocyte lacunae in equine radii and third metacarpals: considerations for cellular communication, microdamage detection and metabolism.
    Skedros JG; Grunander TR; Hamrick MW
    Cells Tissues Organs; 2005; 180(4):215-36. PubMed ID: 16330878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone.
    Skedros JG; Bloebaum RD; Mason MW; Bramble DM
    Anat Rec; 1994 Aug; 239(4):396-404. PubMed ID: 7978363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei.
    Skedros JG; Sybrowsky CL; Anderson WE; Chow F
    J Anat; 2011 Dec; 219(6):722-33. PubMed ID: 21951210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the degree of laminarity correlate with site-specific differences in collagen fibre orientation in primary bone? An evaluation in the turkey ulna diaphysis.
    Skedros JG; Hunt KJ
    J Anat; 2004 Aug; 205(2):121-34. PubMed ID: 15291795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of structural and material adaptation to specific strain features in cortical bone.
    Skedros JG; Mason MW; Nelson MC; Bloebaum RD
    Anat Rec; 1996 Sep; 246(1):47-63. PubMed ID: 8876823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteon interfacial strength and histomorphometry of equine cortical bone.
    Bigley RF; Griffin LV; Christensen L; Vandenbosch R
    J Biomech; 2006; 39(9):1629-40. PubMed ID: 16019009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.