BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20721943)

  • 21. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods.
    Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM
    J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional differences in cortical bone organization and microdamage prevalence in Rocky Mountain mule deer.
    Skedros JG; Sybrowsky CL; Parry TR; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Sep; 274(1):837-50. PubMed ID: 12923894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancing the deer calcaneus model for bone adaptation studies: ex vivo strains obtained after transecting the tension members suggest an unrecognized important role for shear strains.
    Skedros JG; Su SC; Knight AN; Bloebaum RD; Bachus KN
    J Anat; 2019 Jan; 234(1):66-82. PubMed ID: 30411344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness.
    Skedros JG; Clark GC; Sorenson SM; Taylor KW; Qiu S
    Anat Rec (Hoboken); 2011 Sep; 294(9):1472-85. PubMed ID: 21809466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue.
    Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB
    J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical analysis of trabecular 'trajectories' in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur.
    Skedros JG; Baucom SL
    J Theor Biol; 2007 Jan; 244(1):15-45. PubMed ID: 16949618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating interindividual variations in cortical bone quality: analysis of the morphotypes of secondary osteons and their population densities in the human femoral diaphysis.
    Matsuo H; Tsurumoto T; Maeda J; Saiki K; Okamoto K; Ogami-Takamura K; Kondo H; Tomita M; Yonekura A; Osaki M
    Anat Sci Int; 2019 Jan; 94(1):75-85. PubMed ID: 30062504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The artiodactyl calcaneus as a potential 'control bone' cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck.
    Sinclair KD; Farnsworth RW; Pham TX; Knight AN; Bloebaum RD; Skedros JG
    J Hum Evol; 2013 May; 64(5):366-79. PubMed ID: 23481347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loading conditions and cortical bone construction of an artiodactyl calcaneus.
    Su SC; Skedros JG; Bachus KN; Bloebaum RD
    J Exp Biol; 1999 Nov; 202(Pt 22):3239-54. PubMed ID: 10539972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteon classification in human fibular shaft by circularly polarized light.
    Beraudi A; Stea S; Bordini B; Baleani M; Viceconti M
    Cells Tissues Organs; 2010; 191(3):260-8. PubMed ID: 19776542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain-mode-specific mechanical testing and the interpretation of bone adaptation in the deer calcaneus.
    Skedros JG; Dayton MR; Bloebaum RD; Bachus KN; Cronin JT
    J Anat; 2024 Mar; 244(3):411-423. PubMed ID: 37953064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling and remodeling in a developing artiodactyl calcaneus: a model for evaluating Frost's Mechanostat hypothesis and its corollaries.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 2001 Jun; 263(2):167-85. PubMed ID: 11360234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ontogenetic structural and material variations in ovine calcanei: a model for interpreting bone adaptation.
    Skedros JG; Sorenson SM; Hunt KJ; Holyoak JD
    Anat Rec (Hoboken); 2007 Mar; 290(3):284-300. PubMed ID: 17525944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius.
    Mason MW; Skedros JG; Bloebaum RD
    Bone; 1995 Sep; 17(3):229-37. PubMed ID: 8541135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Biomechanics of the bones and skeleton. III. Microstructure].
    Martinko V; Belay M; Machay S; Jelínek L
    Acta Chir Orthop Traumatol Cech; 1989 Apr; 56(2):160-8. PubMed ID: 2750425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pattern of collagen fiber orientation in the ovine calcaneal shaft and its relation to locomotor-induced strain.
    McMahon JM; Boyde A; Bromage TG
    Anat Rec; 1995 Jun; 242(2):147-58. PubMed ID: 7668399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone microstructure in juvenile chimpanzees.
    Mulhern DM; Ubelaker DH
    Am J Phys Anthropol; 2009 Oct; 140(2):368-75. PubMed ID: 19434755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sealed osteons in animals and humans: low prevalence and lack of relationship with age.
    Skedros JG; Henrie TR; Doutré MS; Bloebaum RD
    J Anat; 2018 May; 232(5):824-835. PubMed ID: 29460315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteonal effects on elastic modulus and fatigue life in equine bone.
    Gibson VA; Stover SM; Gibeling JC; Hazelwood SJ; Martin RB
    J Biomech; 2006; 39(2):217-25. PubMed ID: 16321623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Percent osteonal bone versus osteon counts: the variable of choice for estimating age at death.
    Stout SD; Stanley SC
    Am J Phys Anthropol; 1991 Dec; 86(4):515-9. PubMed ID: 1776658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.