These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 20722375)
21. Synthesis and electrochemical reaction with lithium of mesoporous iron oxalate nanoribbons. Aragón MJ; León B; Pérez Vicente C; Tirado JL Inorg Chem; 2008 Nov; 47(22):10366-71. PubMed ID: 18847258 [TBL] [Abstract][Full Text] [Related]
22. Ionic liquid templated porous nano-TiO2 particles for the selective isolation of cytochrome c. Meng H; Chen XW; Wang JH Nanotechnology; 2010 Sep; 21(38):385704. PubMed ID: 20798466 [TBL] [Abstract][Full Text] [Related]
23. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. Xin X; Zhou X; Wu J; Yao X; Liu Z ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962 [TBL] [Abstract][Full Text] [Related]
24. Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12). Wagemaker M; van Eck ER; Kentgens AP; Mulder FM J Phys Chem B; 2009 Jan; 113(1):224-30. PubMed ID: 19118486 [TBL] [Abstract][Full Text] [Related]
25. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries. Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451 [TBL] [Abstract][Full Text] [Related]
26. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
27. Facile and rapid synthesis of highly porous wirelike TiO2 as anodes for lithium-ion batteries. Wang HE; Lu ZG; Xi LJ; Ma RG; Wang CD; Zapien JA; Bello I ACS Appl Mater Interfaces; 2012 Mar; 4(3):1608-13. PubMed ID: 22360340 [TBL] [Abstract][Full Text] [Related]
28. Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials. Jo C; An S; Kim Y; Shim J; Yoon S; Lee J Phys Chem Chem Phys; 2012 Apr; 14(16):5695-704. PubMed ID: 22434145 [TBL] [Abstract][Full Text] [Related]
29. A carbon-coated TiO(2)(B) nanosheet composite for lithium ion batteries. Sun Z; Huang X; Muhler M; Schuhmann W; Ventosa E Chem Commun (Camb); 2014 May; 50(41):5506-9. PubMed ID: 24723013 [TBL] [Abstract][Full Text] [Related]
30. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries. Ng SH; Tran N; Bramnik KG; Hibst H; Novák P Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463 [TBL] [Abstract][Full Text] [Related]
31. Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). Dylla AG; Lee JA; Stevenson KJ Langmuir; 2012 Feb; 28(5):2897-903. PubMed ID: 22225480 [TBL] [Abstract][Full Text] [Related]
32. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Li J; Wan W; Zhou H; Li J; Xu D Chem Commun (Camb); 2011 Mar; 47(12):3439-41. PubMed ID: 21298139 [TBL] [Abstract][Full Text] [Related]
33. Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties. Yoon S; Lee ES; Manthiram A Inorg Chem; 2012 Mar; 51(6):3505-12. PubMed ID: 22380796 [TBL] [Abstract][Full Text] [Related]
34. A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. Li CC; Li QH; Chen LB; Wang TH ACS Appl Mater Interfaces; 2012 Mar; 4(3):1233-8. PubMed ID: 22313873 [TBL] [Abstract][Full Text] [Related]
35. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries. Ventosa E; Tymoczko A; Xie K; Xia W; Muhler M; Schuhmann W ChemSusChem; 2014 Sep; 7(9):2584-9. PubMed ID: 25044925 [TBL] [Abstract][Full Text] [Related]
36. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries. DiLeo RA; Castiglia A; Ganter MJ; Rogers RE; Cress CD; Raffaelle RP; Landi BJ ACS Nano; 2010 Oct; 4(10):6121-31. PubMed ID: 20857949 [TBL] [Abstract][Full Text] [Related]
37. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316 [TBL] [Abstract][Full Text] [Related]
38. A new sodiation-desodiation mechanism of the titania-based negative electrode for sodium-ion batteries. Ding C; Nohira T; Hagiwara R Phys Chem Chem Phys; 2016 Nov; 18(44):30770-30776. PubMed ID: 27796378 [TBL] [Abstract][Full Text] [Related]
39. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. Wu ZS; Ren W; Xu L; Li F; Cheng HM ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205 [TBL] [Abstract][Full Text] [Related]
40. Ammonia-annealed TiO2 as a negative electrode material in li-ion batteries: N doping or oxygen deficiency? Ventosa E; Xia W; Klink S; La Mantia F; Mei B; Muhler M; Schuhmann W Chemistry; 2013 Oct; 19(42):14194-9. PubMed ID: 24026902 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]