These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 20722375)

  • 41. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism.
    Petkovich ND; Wilson BE; Rudisill SG; Stein A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries.
    Shaju KM; Bruce PG
    Dalton Trans; 2008 Oct; (40):5471-5. PubMed ID: 19082030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage.
    Hao B; Yan Y; Wang X; Chen G
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6285-91. PubMed ID: 23742241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-step hydrothermal synthesis of submicron Li(1+x)Ni(0.5)Mn(1.5)O(4-δ) for lithium-ion battery cathodes (x = 0.02, δ = 0.12).
    Hao X; Austin MH; Bartlett BM
    Dalton Trans; 2012 Jul; 41(26):8067-76. PubMed ID: 22585259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries.
    Zhao X; Xia D; Zheng K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1350-6. PubMed ID: 22301516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries.
    Liao JY; Xiao X; Higgins D; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):568-74. PubMed ID: 24328159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural and electrochemical characterization of nanocrystalline LI[Li0.12Ni0.32Mn(0.56)]O2 synthesized by a polymer-pyrolysis route.
    Yu L; Yang H; Ai X; Cao Y
    J Phys Chem B; 2005 Jan; 109(3):1148-54. PubMed ID: 16851074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectroelectrochemical properties and lithium ion storage in self-assembled nanocomposites from TiO2.
    Facci T; Huguenin F
    Langmuir; 2010 Mar; 26(6):4489-96. PubMed ID: 19950971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Unprecedented Case: A Low Specific Surface Area Anatase/N-Doped Carbon Nanocomposite Derived from a New Single Source Precursor Affords Fast and Stable Lithium Storage.
    Gao M; Zou K; Deng Y; Zhao Z; Li Y; Chen G
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28527-28536. PubMed ID: 28795793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.
    Usui H; Yoshioka S; Wasada K; Shimizu M; Sakaguchi H
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6567-73. PubMed ID: 25757057
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery.
    Cheng XL; Hu M; Huang R; Jiang JS
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19176-83. PubMed ID: 25295712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries.
    Wei J; Liu JX; Wu ZY; Zhan ZL; Shi J; Xu K
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5013-9. PubMed ID: 26373069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.
    Hu C; Xiao Y; Zhao Y; Chen N; Zhang Z; Cao M; Qu L
    Nanoscale; 2013 Apr; 5(7):2726-33. PubMed ID: 23426378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.
    Zhang F; Cao H; Yue D; Zhang J; Qu M
    Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High quality NMP exfoliated graphene nanosheet-SnO2 composite anode material for lithium ion battery.
    Ravikumar R; Gopukumar S
    Phys Chem Chem Phys; 2013 Mar; 15(11):3712-7. PubMed ID: 23338965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries.
    Wu MS; Chiang PC; Lee JT; Lin JC
    J Phys Chem B; 2005 Dec; 109(49):23279-84. PubMed ID: 16375294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of surfactants and viscosity in the preparation process of battery electrodes containing nanoparticles.
    Hintennach A; Novák P
    Phys Chem Chem Phys; 2009 Nov; 11(41):9484-8. PubMed ID: 19830332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.