BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20722409)

  • 1. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device.
    Nelson T; Zhang B; Prezhdo OV
    Nano Lett; 2010 Sep; 10(9):3237-42. PubMed ID: 20722409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast DNA sequencing with a graphene-based nanochannel device.
    Min SK; Kim WY; Cho Y; Kim KS
    Nat Nanotechnol; 2011 Mar; 6(3):162-5. PubMed ID: 21297626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL; Ahmed T; Zhu JX; Balatsky AV; Haraldsen JT
    J Phys Chem Lett; 2015 Jul; 6(13):2616-21. PubMed ID: 26266743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopores and nucleic acids: prospects for ultrarapid sequencing.
    Deamer DW; Akeson M
    Trends Biotechnol; 2000 Apr; 18(4):147-51. PubMed ID: 10740260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio electron propagator calculations of transverse conduction through DNA nucleotide bases in 1-nm nanopore corroborate third generation sequencing.
    Kletsov AA; Glukhovskoy EG; Chumakov AS; Ortiz JV
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt A):140-5. PubMed ID: 26525735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene sculpturene nanopores for DNA nucleobase sensing.
    Sadeghi H; Algaragholy L; Pope T; Bailey S; Visontai D; Manrique D; Ferrer J; Garcia-Suarez V; Sangtarash S; Lambert CJ
    J Phys Chem B; 2014 Jun; 118(24):6908-14. PubMed ID: 24849015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore.
    Ayub M; Bayley H
    Nano Lett; 2012 Nov; 12(11):5637-43. PubMed ID: 23043363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS
    Luan B; Zhou R
    ACS Nano; 2018 Apr; 12(4):3886-3891. PubMed ID: 29648440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore.
    de Souza FAL; Sivaraman G; Fyta M; Scheicher RH; Scopel WL; Amorim RG
    Nanoscale; 2020 Sep; 12(35):18289-18295. PubMed ID: 32857078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gauging the Nanotoxicity of h2D-C
    Mukhopadhyay TK; Bhattacharyya K; Datta A
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13805-13818. PubMed ID: 29611415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
    Qiu H; Sarathy A; Leburton JP; Schulten K
    Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable graphene quantum point contact transistor for DNA detection and characterization.
    Girdhar A; Sathe C; Schulten K; Leburton JP
    Nanotechnology; 2015 Mar; 26(13):134005. PubMed ID: 25765702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequencing via molecular dynamics simulation with functionalized graphene nanopore.
    Mohammadi MM; Bavi O; Jamali Y
    J Mol Graph Model; 2023 Jul; 122():108467. PubMed ID: 37028198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore-based sequencing and detection of nucleic acids.
    Ying YL; Zhang J; Gao R; Long YT
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13154-61. PubMed ID: 24214738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling.
    Wasfi A; Awwad F; Ayesh AI
    IEEE Trans Nanobioscience; 2022 Jul; 21(3):347-357. PubMed ID: 33945483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.