These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 20722420)
1. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione . Hong B; Nauss R; Harwood IM; Miller SM Biochemistry; 2010 Sep; 49(37):8187-96. PubMed ID: 20722420 [TBL] [Abstract][Full Text] [Related]
2. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA. Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746 [TBL] [Abstract][Full Text] [Related]
3. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA). Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization of intramolecular Hg(2+) transfer between flexibly linked domains of mercuric ion reductase. Johs A; Harwood IM; Parks JM; Nauss RE; Smith JC; Liang L; Miller SM J Mol Biol; 2011 Oct; 413(3):639-56. PubMed ID: 21893070 [TBL] [Abstract][Full Text] [Related]
5. NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Ledwidge R; Patel B; Dong A; Fiedler D; Falkowski M; Zelikova J; Summers AO; Pai EF; Miller SM Biochemistry; 2005 Aug; 44(34):11402-16. PubMed ID: 16114877 [TBL] [Abstract][Full Text] [Related]
6. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system. Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Walsh CT; Distefano MD; Moore MJ; Shewchuk LM; Verdine GL FASEB J; 1988 Feb; 2(2):124-30. PubMed ID: 3277886 [TBL] [Abstract][Full Text] [Related]
8. Expanded Diversity and Phylogeny of Christakis CA; Barkay T; Boyd ES Front Microbiol; 2021; 12():682605. PubMed ID: 34248899 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173 [TBL] [Abstract][Full Text] [Related]
10. NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols. Ledwidge R; Hong B; Dötsch V; Miller SM Biochemistry; 2010 Oct; 49(41):8988-98. PubMed ID: 20828160 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation. Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822 [TBL] [Abstract][Full Text] [Related]
12. Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Bizily SP; Kim T; Kandasamy MK; Meagher RB Plant Physiol; 2003 Feb; 131(2):463-71. PubMed ID: 12586871 [TBL] [Abstract][Full Text] [Related]
14. Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae. Freedman Z; Zhu C; Barkay T Appl Environ Microbiol; 2012 Sep; 78(18):6568-75. PubMed ID: 22773655 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem. Lu X; Liu Y; Johs A; Zhao L; Wang T; Yang Z; Lin H; Elias DA; Pierce EM; Liang L; Barkay T; Gu B Environ Sci Technol; 2016 Apr; 50(8):4366-73. PubMed ID: 27019098 [TBL] [Abstract][Full Text] [Related]
16. C-terminal cysteines of Tn501 mercuric ion reductase. Moore MJ; Miller SM; Walsh CT Biochemistry; 1992 Feb; 31(6):1677-85. PubMed ID: 1531297 [TBL] [Abstract][Full Text] [Related]
17. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485 [TBL] [Abstract][Full Text] [Related]
18. Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase. Hong L; Sharp MA; Poblete S; Biehl R; Zamponi M; Szekely N; Appavou MS; Winkler RG; Nauss RE; Johs A; Parks JM; Yi Z; Cheng X; Liang L; Ohl M; Miller SM; Richter D; Gompper G; Smith JC Biophys J; 2014 Jul; 107(2):393-400. PubMed ID: 25028881 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic pathways of mercury removal from the organomercurial lyase active site. Silva PJ; Rodrigues V PeerJ; 2015; 3():e1127. PubMed ID: 26246970 [TBL] [Abstract][Full Text] [Related]
20. X-ray structure of a Hg2+ complex of mercuric reductase (MerA) and quantum mechanical/molecular mechanical study of Hg2+ transfer between the C-terminal and buried catalytic site cysteine pairs. Lian P; Guo HB; Riccardi D; Dong A; Parks JM; Xu Q; Pai EF; Miller SM; Wei DQ; Smith JC; Guo H Biochemistry; 2014 Nov; 53(46):7211-22. PubMed ID: 25343681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]