These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 20722421)
1. A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin. Proc JL; Kuzyk MA; Hardie DB; Yang J; Smith DS; Jackson AM; Parker CE; Borchers CH J Proteome Res; 2010 Oct; 9(10):5422-37. PubMed ID: 20722421 [TBL] [Abstract][Full Text] [Related]
2. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate. Serra A; Zhu H; Gallart-Palau X; Park JE; Ho HH; Tam JP; Sze SK Anal Bioanal Chem; 2016 Mar; 408(7):1963-73. PubMed ID: 26804737 [TBL] [Abstract][Full Text] [Related]
4. Sodium-deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Lin Y; Zhou J; Bi D; Chen P; Wang X; Liang S Anal Biochem; 2008 Jun; 377(2):259-66. PubMed ID: 18384734 [TBL] [Abstract][Full Text] [Related]
5. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Kuzyk MA; Smith D; Yang J; Cross TJ; Jackson AM; Hardie DB; Anderson NL; Borchers CH Mol Cell Proteomics; 2009 Aug; 8(8):1860-77. PubMed ID: 19411661 [TBL] [Abstract][Full Text] [Related]
6. A strategy for liquid chromatography/tandem mass spectrometry based quantitation of pegylated protein drugs in plasma using plasma protein precipitation with water-miscible organic solvents and subsequent trypsin digestion to generate surrogate peptides for detection. Wu ST; Ouyang Z; Olah TV; Jemal M Rapid Commun Mass Spectrom; 2011 Jan; 25(2):281-90. PubMed ID: 21192023 [TBL] [Abstract][Full Text] [Related]
7. Impact of Surfactants on Cumulative Trypsin Activity in Bottom-Up Proteome Analysis. Nickerson JL; Sheridan LV; Doucette AA J Proteome Res; 2024 Aug; 23(8):3542-3551. PubMed ID: 38973097 [TBL] [Abstract][Full Text] [Related]
8. Combine and conquer: surfactants, solvents, and chaotropes for robust mass spectrometry based analyses of membrane proteins. Waas M; Bhattacharya S; Chuppa S; Wu X; Jensen DR; Omasits U; Wollscheid B; Volkman BF; Noon KR; Gundry RL Anal Chem; 2014 Feb; 86(3):1551-9. PubMed ID: 24392666 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. Zhou J; Zhou T; Cao R; Liu Z; Shen J; Chen P; Wang X; Liang S J Proteome Res; 2006 Oct; 5(10):2547-53. PubMed ID: 17022626 [TBL] [Abstract][Full Text] [Related]
10. Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750 [TBL] [Abstract][Full Text] [Related]
11. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry. Scheerlinck E; Dhaenens M; Van Soom A; Peelman L; De Sutter P; Van Steendam K; Deforce D Anal Biochem; 2015 Dec; 490():14-9. PubMed ID: 26302362 [TBL] [Abstract][Full Text] [Related]
13. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. Dittrich J; Becker S; Hecht M; Ceglarek U Proteomics Clin Appl; 2015 Feb; 9(1-2):5-16. PubMed ID: 25418444 [TBL] [Abstract][Full Text] [Related]
14. Improved in-solution trypsin digestion method for methanol-chloroform precipitated cellular proteomics sample. Shahinuzzaman ADA; Chakrabarty JK; Fang Z; Smith D; Kamal AHM; Chowdhury SM J Sep Sci; 2020 Jun; 43(11):2125-2132. PubMed ID: 32073721 [TBL] [Abstract][Full Text] [Related]
15. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. Zhang N; Li L Rapid Commun Mass Spectrom; 2004; 18(8):889-96. PubMed ID: 15095358 [TBL] [Abstract][Full Text] [Related]
16. Screening a Resource of Recombinant Protein Fragments for Targeted Proteomics. Edfors F; Forsström B; Vunk H; Kotol D; Fredolini C; Maddalo G; Svensson AS; Boström T; Tegel H; Nilsson P; Schwenk JM; Uhlen M J Proteome Res; 2019 Jul; 18(7):2706-2718. PubMed ID: 31094526 [TBL] [Abstract][Full Text] [Related]
17. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics. Zhang X Mol Cell Proteomics; 2015 Sep; 14(9):2441-53. PubMed ID: 26081834 [TBL] [Abstract][Full Text] [Related]
18. Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatography-tandem mass spectrometry. Liang LH; Cheng X; Yu HL; Yang Y; Mu XH; Chen B; Li XS; Wu JN; Yan L; Liu CC; Liu SL Anal Bioanal Chem; 2021 Jan; 413(2):585-597. PubMed ID: 33184759 [TBL] [Abstract][Full Text] [Related]
19. Evaluation and minimization of nonspecific tryptic cleavages in proteomic sample preparation. Lin Z; Ren Y; Shi Z; Zhang K; Yang H; Liu S; Hao P Rapid Commun Mass Spectrom; 2020 May; 34(10):e8733. PubMed ID: 32031715 [TBL] [Abstract][Full Text] [Related]
20. Coupling methanol denaturation, immobilized trypsin digestion, and accurate mass and time tagging for liquid-chromatography-based shotgun proteomics of low nanogram amounts of RAW 264.7 cell lysate. Sun L; Zhu G; Li Y; Yang P; Dovichi NJ Anal Chem; 2012 Oct; 84(20):8715-21. PubMed ID: 22971241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]