These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20722583)

  • 1. Hypothesis-based weight of evidence: a tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action--naphthalene as an example.
    Rhomberg LR; Bailey LA; Goodman JE
    Crit Rev Toxicol; 2010 Sep; 40(8):671-96. PubMed ID: 20722583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential human cancer risks from exposure to PCBs: a tale of two evaluations.
    Golden R; Doull J; Waddell W; Mandel J
    Crit Rev Toxicol; 2003; 33(5):543-80. PubMed ID: 14594106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical assessment of the genetic toxicity of naphthalene.
    Brusick D
    Regul Toxicol Pharmacol; 2008 Jul; 51(2 Suppl):S37-42. PubMed ID: 17980943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding population and individual risk assessment: the case of polychlorinated biphenyls.
    Shields PG
    Cancer Epidemiol Biomarkers Prev; 2006 May; 15(5):830-9. PubMed ID: 16702358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible genotoxic modes of action for naphthalene.
    Brusick D; Small MS; Cavalieri EL; Chakravarti D; Ding X; Longfellow DG; Nakamura J; Rogan EC; Swenberg JA
    Regul Toxicol Pharmacol; 2008 Jul; 51(2 Suppl):S43-50. PubMed ID: 18194829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure, epidemiology and human cancer incidence of naphthalene.
    Griego FY; Bogen KT; Price PS; Weed DL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2 Suppl):S22-6. PubMed ID: 18423820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benzothiazole toxicity assessment in support of synthetic turf field human health risk assessment.
    Ginsberg G; Toal B; Kurland T
    J Toxicol Environ Health A; 2011; 74(17):1175-83. PubMed ID: 21797770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for genotoxicity testing: hazard identification and risk assessment in relation to in vitro testing.
    Thybaud V; Aardema M; Clements J; Dearfield K; Galloway S; Hayashi M; Jacobson-Kram D; Kirkland D; MacGregor JT; Marzin D; Ohyama W; Schuler M; Suzuki H; Zeiger E;
    Mutat Res; 2007 Feb; 627(1):41-58. PubMed ID: 17126066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of whole animal bioassays of the carcinogenic potential of naphthalene.
    North DW; Abdo KM; Benson JM; Dahl AR; Morris JB; Renne R; Witschi H
    Regul Toxicol Pharmacol; 2008 Jul; 51(2 Suppl):S6-14. PubMed ID: 18364246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Framework analysis for the carcinogenic mode of action of nitrobenzene.
    Hsu CH; Stedeford T; Okochi-Takada E; Ushijima T; Noguchi H; Muro-Cacho C; Holder JW; Banasik M
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2007; 25(2):155-84. PubMed ID: 17558784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carcinogenic risk assessment of chemicals].
    Hayashi Y
    Eisei Shikenjo Hokoku; 1990; (108):1-16. PubMed ID: 1364333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotoxicity of 1,3-butadiene and its epoxy intermediates.
    Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF;
    Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is inhalation exposure to formaldehyde a biologically plausible cause of lymphohematopoietic malignancies?
    Pyatt D; Natelson E; Golden R
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):119-33. PubMed ID: 18440686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research strategy for developing key information on bromate's mode of action.
    Bull RJ; Cottruvo JA
    Toxicology; 2006 Apr; 221(2-3):135-44. PubMed ID: 16298034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beryllium and lung cancer: a weight of evidence evaluation of the toxicological and epidemiological literature.
    Hollins DM; McKinley MA; Williams C; Wiman A; Fillos D; Chapman PS; Madl AK
    Crit Rev Toxicol; 2009; 39 Suppl 1():1-32. PubMed ID: 19384680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.