BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20722946)

  • 1. Development of associations and kinetic models for microbiological data to be used in comprehensive food safety prediction software.
    Halder A; Black DG; Davidson PM; Datta A
    J Food Sci; 2010 Aug; 75(6):R107-20. PubMed ID: 20722946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information systems in food safety management.
    McMeekin TA; Baranyi J; Bowman J; Dalgaard P; Kirk M; Ross T; Schmid S; Zwietering MH
    Int J Food Microbiol; 2006 Dec; 112(3):181-94. PubMed ID: 16934895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of food safety information based on a combination of a relational database and a predictive modeling tool.
    Vialette M; Pinon A; Leporq B; Dervin C; Membré JM
    Risk Anal; 2005 Feb; 25(1):75-83. PubMed ID: 15787758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling growth and reduction of microorganisms in foods as functions of temperature and time.
    McMasters RL; Todd EC
    Risk Anal; 2004 Apr; 24(2):409-14. PubMed ID: 15078311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study of the microbiological quality of culturally diverse, ready-to-eat foods from selected retail establishments in Melbourne, Australia.
    McLean SK; Dunn LA; Palombo EA
    Foodborne Pathog Dis; 2010 May; 7(5):585-8. PubMed ID: 20001329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The "Sym'Previus" software, a tool to support decisions to the foodstuff safety.
    Leporq B; Membré JM; Dervin C; Buche P; Guyonnet JP
    Int J Food Microbiol; 2005 Apr; 100(1-3):231-7. PubMed ID: 15854708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.
    Amézquita A; Weller CL; Wang L; Thippareddi H; Burson DE
    Int J Food Microbiol; 2005 May; 101(2):123-44. PubMed ID: 15862875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food.
    Membré JM; Leporq B; Vialette M; Mettler E; Perrier L; Thuault D; Zwietering M
    Int J Food Microbiol; 2005 Apr; 100(1-3):179-86. PubMed ID: 15854703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future challenges to microbial food safety.
    Havelaar AH; Brul S; de Jong A; de Jonge R; Zwietering MH; Ter Kuile BH
    Int J Food Microbiol; 2010 May; 139 Suppl 1():S79-94. PubMed ID: 19913933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of computerized models to reduce the consequences of major outbreaks of food-borne illness.
    Jaine AM
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Sep; 25(9):1067-75. PubMed ID: 18798035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty in thermal process calculations due to variability in first-order and Weibull kinetic parameters.
    Halder A; Datta AK; Geedipalli SS
    J Food Sci; 2007 May; 72(4):E155-67. PubMed ID: 17995767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of predictive modelling techniques in industry: from food design up to risk assessment.
    Membré JM; Lambert RJ
    Int J Food Microbiol; 2008 Nov; 128(1):10-5. PubMed ID: 18701182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating model uncertainties along with data uncertainties in microbial risk assessment.
    Kang SH; Kodell RL; Chen JJ
    Regul Toxicol Pharmacol; 2000 Aug; 32(1):68-72. PubMed ID: 11029270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments.
    Koseki S
    Int J Food Microbiol; 2009 Aug; 134(1-2):75-82. PubMed ID: 19181410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.
    Hong BX; Jiang LF; Hu YS; Fang DY; Guo HY
    J Microbiol Methods; 2004 Sep; 58(3):403-11. PubMed ID: 15279944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and classification of consumer food-handling behaviors for food safety education.
    Medeiros LC; Kendall P; Hillers V; Chen G; DiMascola S
    J Am Diet Assoc; 2001 Nov; 101(11):1326-39. PubMed ID: 11716314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.