These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20722946)

  • 21. [Predictive microbiology. Toward an operational tool to help our appraisal].
    Jolivet P
    Ann Pharm Fr; 2000 Dec; 58(6 Suppl):475-81. PubMed ID: 11148386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive modelling of growth, survival and inactivation of pathogenic and spoilage organisms in foods.
    Roberts TA
    Microbiologia; 1993 Feb; 9 Spec No():93-5. PubMed ID: 8484921
    [No Abstract]   [Full Text] [Related]  

  • 23. 'MicroHibro': A software tool for predictive microbiology and microbial risk assessment in foods.
    González SC; Possas A; Carrasco E; Valero A; Bolívar A; Posada-Izquierdo GD; García-Gimeno RM; Zurera G; Pérez-Rodríguez F
    Int J Food Microbiol; 2019 Feb; 290():226-236. PubMed ID: 30368088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2008 Aug; 126(1-2):98-111. PubMed ID: 18579249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging food pathogens and bacterial toxins.
    Bielecki J
    Acta Microbiol Pol; 2003; 52 Suppl():17-22. PubMed ID: 15058810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of quantitative risk assessment to microbial food safety risks.
    Jaykus LA
    Crit Rev Microbiol; 1996; 22(4):279-93. PubMed ID: 8989514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative microbiology: a basis for food safety.
    McMeekin TA; Brown J; Krist K; Miles D; Neumeyer K; Nichols DS; Olley J; Presser K; Ratkowsky DA; Ross T; Salter M; Soontranon S
    Emerg Infect Dis; 1997; 3(4):541-9. PubMed ID: 9366608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbiological risk assessment models for partitioning and mixing during food handling.
    Nauta MJ
    Int J Food Microbiol; 2005 Apr; 100(1-3):311-22. PubMed ID: 15854714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk assessment strategies for Europe: integrated safety strategy or final product control: Example of Listeria monocytogenes in processed products from pork meat industry.
    Salvat G; Fravalo P
    Dtsch Tierarztl Wochenschr; 2004 Aug; 111(8):331-4. PubMed ID: 15469063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model averaging using the Kullback information criterion in estimating effective doses for microbial infection and illness.
    Moon H; Kim HJ; Chen JJ; Kodell RL
    Risk Anal; 2005 Oct; 25(5):1147-59. PubMed ID: 16297221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria.
    Elgaali H; Hamilton-Kemp TR; Newman MC; Collins RW; Yu K; Archbold DD
    J Basic Microbiol; 2002; 42(6):373-80. PubMed ID: 12442299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of foodborne outbreak data reported internationally for source attribution.
    Greig JD; Ravel A
    Int J Food Microbiol; 2009 Mar; 130(2):77-87. PubMed ID: 19178974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does microbiological testing of foods and the food environment have a role in the control of foodborne disease in England and Wales?
    Tebbutt GM
    J Appl Microbiol; 2007 Apr; 102(4):883-91. PubMed ID: 17381731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A risk assessment approach applied to the growth of Erwinia carotovora in vegetable juice for variable temperature conditions.
    Shorten PR; Soboleva TK; Pleasants AB; Membré JM
    Int J Food Microbiol; 2006 May; 109(1-2):60-70. PubMed ID: 16507324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accounting for inherent variability of growth in microbial risk assessment.
    Marks HM; Coleman ME
    Int J Food Microbiol; 2005 Apr; 100(1-3):275-87. PubMed ID: 15854712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.
    Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Risk assessment of foodborne infections].
    Bräunig J; Hensel A
    Dtsch Tierarztl Wochenschr; 2004 Aug; 111(8):304-7. PubMed ID: 15469055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.