These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20722946)

  • 41. Introduction to supplement issue PathogenCombat: reducing food borne disease in Europe--control and prevention of emerging pathogens at cellular and molecular level throughout the food chain.
    Jakobsen M
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S1-3. PubMed ID: 20638144
    [No Abstract]   [Full Text] [Related]  

  • 42. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group.
    Carlin F; Fricker M; Pielaat A; Heisterkamp S; Shaheen R; Salonen MS; Svensson B; Nguyen-the C; Ehling-Schulz M
    Int J Food Microbiol; 2006 May; 109(1-2):132-8. PubMed ID: 16503068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predictive model for growth of Clostridium perfringens in cooked cured pork.
    Juneja VK; Huang L; Thippareddi HH
    Int J Food Microbiol; 2006 Jul; 110(1):85-92. PubMed ID: 16697066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination.
    Valdramidis VP; Belaubre N; Zuniga R; Foster AM; Havet M; Geeraerd AH; Swain MJ; Bernaerts K; Van Impe JF; Kondjoyan A
    Int J Food Microbiol; 2005 Apr; 100(1-3):261-74. PubMed ID: 15854711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Partitioning of the variance in the growth parameters of Erwinia carotovora on vegetable products.
    Shorten PR; Membré JM; Pleasants AB; Kubaczka M; Soboleva TK
    Int J Food Microbiol; 2004 Jun; 93(2):195-208. PubMed ID: 15135958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
    Huang L
    Int J Food Microbiol; 2017 Dec; 262():38-48. PubMed ID: 28961521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial food safety in Ghana: a meta-analysis.
    Saba CK; Gonzalez-Zorn B
    J Infect Dev Ctries; 2012 Dec; 6(12):828-35. PubMed ID: 23276735
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbiological food safety: a dilemma of developing societies.
    Akhtar S; Sarker MR; Hossain A
    Crit Rev Microbiol; 2014 Nov; 40(4):348-59. PubMed ID: 23173983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computer aided microbial safety design of food processes.
    Schellekens M; Martens T; Roberts TA; Mackey BM; Nicolaï BM; Van Impe JF; De Baerdemaeker J
    Int J Food Microbiol; 1994 Dec; 24(1-2):1-9. PubMed ID: 7703003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond.
    Falenski A; Weiser AA; Thöns C; Appel B; Käsbohrer A; Filter M
    Biomed Res Int; 2015; 2015():830809. PubMed ID: 26247028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flexible querying of Web data to simulate bacterial growth in food.
    Buche P; Couvert O; Dibie-Barthélemy J; Hignette G; Mettler E; Soler L
    Food Microbiol; 2011 Jun; 28(4):685-93. PubMed ID: 21511128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A decision support system for the prediction of microbial food safety and food quality.
    Wijtzes T; van't Riet K; Huis in't Veld JH; Zwietering MH
    Int J Food Microbiol; 1998 Jun; 42(1-2):79-90. PubMed ID: 9706801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inactivation kinetics of food-borne pathogens subjected to thermal treatments: a review.
    Li R; Kou X; Zhang L; Wang S
    Int J Hyperthermia; 2018 Mar; 34(2):177-188. PubMed ID: 29498308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinactivation: Software for modelling dynamic microbial inactivation.
    Garre A; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2017 Mar; 93():66-74. PubMed ID: 28290281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling microbial growth in structured foods: towards a unified approach.
    Wilson PD; Brocklehurst TF; Arino S; Thuault D; Jakobsen M; Lange M; Farkas J; Wimpenny JW; Van Impe JF
    Int J Food Microbiol; 2002 Mar; 73(2-3):275-89. PubMed ID: 11934035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of food and water borne pathogens' dose-response curves using the expanded Fermi Solution.
    Peleg M; Normand MD; Corradini MG
    J Food Sci; 2011 Apr; 76(3):R82-9. PubMed ID: 21535853
    [TBL] [Abstract][Full Text] [Related]  

  • 57. IPMP 2013--a comprehensive data analysis tool for predictive microbiology.
    Huang L
    Int J Food Microbiol; 2014 Feb; 171():100-7. PubMed ID: 24334095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling microbial growth within food safety risk assessments.
    Ross T; McMeekin TA
    Risk Anal; 2003 Feb; 23(1):179-97. PubMed ID: 12635732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Next generation of microbiological risk assessment: Potential of omics data for exposure assessment.
    den Besten HMW; Amézquita A; Bover-Cid S; Dagnas S; Ellouze M; Guillou S; Nychas G; O'Mahony C; Pérez-Rodriguez F; Membré JM
    Int J Food Microbiol; 2018 Dec; 287():18-27. PubMed ID: 29032838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Software for predictive microbiology and risk assessment: a description and comparison of tools presented at the ICPMF8 Software Fair.
    Tenenhaus-Aziza F; Ellouze M
    Food Microbiol; 2015 Feb; 45(Pt B):290-9. PubMed ID: 25500394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.