These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 20723054)

  • 1. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change.
    Sork VL; Davis FW; Westfall R; Flint A; Ikegami M; Wang H; Grivet D
    Mol Ecol; 2010 Sep; 19(17):3806-23. PubMed ID: 20723054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning.
    Grivet D; Sork VL; Westfall RD; Davis FW
    Mol Ecol; 2008 Jan; 17(1):139-56. PubMed ID: 17868293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née.
    Gugger PF; Ikegami M; Sork VL
    Mol Ecol; 2013 Jul; 22(13):3598-612. PubMed ID: 23802553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe.
    Grivet D; Deguilloux MF; Petit RJ; Sork VL
    Mol Ecol; 2006 Nov; 15(13):4085-93. PubMed ID: 17054504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak.
    Ortego J; Riordan EC; Gugger PF; Sork VL
    Mol Ecol; 2012 Jul; 21(13):3210-23. PubMed ID: 22548448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (Quercus lobata, Née).
    Grivet D; Robledo-Arnuncio JJ; Smouse PE; Sork VL
    Mol Ecol; 2009 Oct; 18(19):3967-79. PubMed ID: 19754515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees.
    Alberto F; Niort J; Derory J; Lepais O; Vitalis R; Galop D; Kremer A
    Mol Ecol; 2010 Jul; 19(13):2626-39. PubMed ID: 20561196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.
    Riordan EC; Gugger PF; Ortego J; Smith C; Gaddis K; Thompson P; Sork VL
    Am J Bot; 2016 Jan; 103(1):73-85. PubMed ID: 26758886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata.
    Sork VL; Squire K; Gugger PF; Steele SE; Levy ED; Eckert AJ
    Am J Bot; 2016 Jan; 103(1):33-46. PubMed ID: 26744482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae.
    Magni CR; Ducousso A; Caron H; Petit RJ; Kremer A
    Mol Ecol; 2005 Feb; 14(2):513-24. PubMed ID: 15660942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis.
    Arana MV; Gallo LA; Vendramin GG; Pastorino MJ; Sebastiani F; Marchelli P
    Mol Phylogenet Evol; 2010 Mar; 54(3):941-9. PubMed ID: 19919852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape genetics and population structure in Valley Oak (Quercus lobata Née).
    Ashley MV; Abraham ST; Backs JR; Koenig WD
    Am J Bot; 2015 Dec; 102(12):2124-31. PubMed ID: 26672009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages.
    Yan M; Liu R; Li Y; Hipp AL; Deng M; Xiong Y
    BMC Evol Biol; 2019 Nov; 19(1):202. PubMed ID: 31684859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation.
    Zeng YF; Liao WJ; Petit RJ; Zhang DY
    Mol Ecol; 2011 Dec; 20(23):4995-5011. PubMed ID: 22059561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view.
    Soto A; Robledo-Arnuncio JJ; González-Martínez SC; Smouse PE; Alía R
    Mol Ecol; 2010 Apr; 19(7):1396-409. PubMed ID: 20196810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Living on the edge: the role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak.
    Ortego J; Bonal R; Muñoz A; Espelta JM
    Plant Biol (Stuttg); 2015 May; 17(3):676-83. PubMed ID: 25284378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients.
    Gugger PF; Fitz-Gibbon S; PellEgrini M; Sork VL
    Mol Ecol; 2016 Apr; 25(8):1665-80. PubMed ID: 26833902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low genetic diversity, moderate local adaptation, and phylogeographic insights in Cornus nuttallii (Cornaceae).
    Keir KR; Bemmels JB; Aitken SN
    Am J Bot; 2011 Aug; 98(8):1327-36. PubMed ID: 21821593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling.
    Chybicki IJ; Burczyk J
    Mol Ecol; 2010 May; 19(10):2137-51. PubMed ID: 20550635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.).
    Muir G; Schlötterer C
    Mol Ecol; 2005 Feb; 14(2):549-61. PubMed ID: 15660945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.